Subgraph isomorphism in graph classes
We investigate the computational complexity of the following restricted variant of Subgraph Isomorphism: given a pair of connected graphs G=(VG,EG) and H=(VH,EH), determine if H is isomorphic to a spanning subgraph of G. The problem is NP-complete in general, and thus we consider cases where G and H...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2012-11, Vol.312 (21), p.3164-3173 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the computational complexity of the following restricted variant of Subgraph Isomorphism: given a pair of connected graphs G=(VG,EG) and H=(VH,EH), determine if H is isomorphic to a spanning subgraph of G. The problem is NP-complete in general, and thus we consider cases where G and H belong to the same graph class such as the class of proper interval graphs, of trivially perfect graphs, and of bipartite permutation graphs. For these graph classes, several restricted versions of Subgraph Isomorphism such as Hamiltonian Path, Clique, Bandwidth, and Graph Isomorphism can be solved in polynomial time, while these problems are hard in general. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2012.07.010 |