Analysis on two approaches for high order accuracy finite difference computation
We analyze two approaches for enhancing the accuracy of the standard second order finite difference schemes in solving one dimensional elliptic partial differential equations. These are the fourth order compact difference scheme and the fourth order scheme based on the Richardson extrapolation techn...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2012-12, Vol.25 (12), p.2081-2085 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze two approaches for enhancing the accuracy of the standard second order finite difference schemes in solving one dimensional elliptic partial differential equations. These are the fourth order compact difference scheme and the fourth order scheme based on the Richardson extrapolation techniques. We study the truncation errors of these approaches and comment on their regularity requirements and computational costs. We present numerical experiments to demonstrate the validity of our analysis. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2012.05.003 |