An experimental study of pressure loss and heat transfer in the pin fin-dimple channels with various dimple depths
An experimental study was conducted to investigate the effects of dimple depth on the pressure loss and heat transfer characteristics in a pin fin-dimple channel, where dimples are located on the endwall transversely between the pin fins. The pin fin-dimple channels considered consist of ten rows of...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2012-11, Vol.55 (23-24), p.6723-6733 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An experimental study was conducted to investigate the effects of dimple depth on the pressure loss and heat transfer characteristics in a pin fin-dimple channel, where dimples are located on the endwall transversely between the pin fins. The pin fin-dimple channels considered consist of ten rows of pin fin-dimple combined structure. The pin fin transverse spacing-to-diameter ratio S/D=2.5, the streamwise spacing-to-diameter ratio X/D=2.5, the pin fin height-to-diameter ratio H/D=1.0. The dimples have a print diameter the same with the pin fins, but have three different dimple depth-to-diameter ratios, i.e. δ/D=0.1, 0.2 and 0.3. The experimental results, mainly the average Nusselt number and friction factor, for the pin fin-dimple channels with various dimple depths have been obtained and compared with each other for the Reynolds number range of 8200–50,500. The study showed that, compared to the baseline pin fin channel, the pin fin-dimple channels have further improved convective heat transfer performance by up to 19.0%, and the pin fin-dimple channel with deeper dimples shows relatively higher Nusselt number values. The study still showed dimple depth-dependent pressure loss behaviors for the pin fin-dimple channels compared to the pin fin channel, and the pin fin-dimple channel with shallower dimples shows relatively lower friction factors by up to 17.6% over the studied Reynolds number range. Furthermore, three-dimensional conjugate computations have been carried out for similar experimental conditions, and the computations showed the detailed characteristics in the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the associated dimple depth-dependent pressure loss and heat transfer characteristics in the pin fin-dimple channels. |
---|---|
ISSN: | 0017-9310 1879-2189 |
DOI: | 10.1016/j.ijheatmasstransfer.2012.06.081 |