Spontaneous formation of silver nanoparticles in aminosilica

We report a rapid and spontaneous metallization process associated with sol–gel reaction of aminosilane that can be utilized to synthesise silver embedded silica nanocomposite without involving additional reducing agents. The reduction reaction induced by bis[3-(trimethoxysilyl)propyl]ethylenediamin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2009-07, Vol.51 (1), p.124-132
Hauptverfasser: Choi, Yong-Jae, Huh, Uk, Luo, Tzy-Jiun M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a rapid and spontaneous metallization process associated with sol–gel reaction of aminosilane that can be utilized to synthesise silver embedded silica nanocomposite without involving additional reducing agents. The reduction reaction induced by bis[3-(trimethoxysilyl)propyl]ethylenediamine (enTMOS) involves amine functional moieties, which drive the reduction reaction with presence of water. Cyclic voltammetry was used to investigate the redox potential of enTMOS and its relation to chemical environment. It was found that the oxidation potential of enTMOS depending on the amount of water (water:enTMOS (v/v) = 8:1–0:1) ranges from 0.48 to 0.68 V versus Ag/AgCl electrode in methanol. The oxidation potential of aminosilane decreases with water content and becomes more negative than that of Ag, suggesting the aminosilane acts as a silver reducing agent while serving as a matrix to encapsulate silver nanoparticles after reacting with water. This process has been utilized to produce evenly dispersed silver nanoparticles with sizes ranging from 5 to 20 nm in both liquid and solid forms of aminosilane, allowing us to prepare silver nanoparticles doped silica nanocomposite that exhibits enhanced electrochemical properties.
ISSN:0928-0707
1573-4846
DOI:10.1007/s10971-009-1934-1