Development of in silico filters to predict activation of the pregnane X receptor (PXR) by structurally diverse drug-like molecules
The pregnane X receptor (PXR), a member of the nuclear hormone superfamily, regulates the expression of several enzymes and transporters involved in metabolically relevant processes. The significant induction of CYP450 enzymes by PXR, in particular CYP3A4, might significantly alter the metabolism of...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry 2012-09, Vol.20 (18), p.5352-5365 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pregnane X receptor (PXR), a member of the nuclear hormone superfamily, regulates the expression of several enzymes and transporters involved in metabolically relevant processes. The significant induction of CYP450 enzymes by PXR, in particular CYP3A4, might significantly alter the metabolism of prescribed drugs. In order to early identify molecules in drug discovery with a potential to activate PXR as antitarget, we developed fast and reliable in silico filters by ligand-based QSAR techniques. Two classification models were established on a diverse dataset of 434 drug-like molecules. A second augmented set allowed focusing on interesting regions in chemical space. These classifiers are based on decision trees combined with a genetic algorithm based variable selection to arrive at predictive models. The classifier for the first dataset on 29 descriptors showed good performance on a test set with a correct classification of both 100% for PXR activators and non-activators plus 87% for activators and 83% for non-activators in an external dataset. The second classifier then correctly predicts 97% activators and 91% non-activators in a test set and 94% for activators and 64% non-activators in an external set of 50 molecules, which still qualifies for application as a filter focusing on PXR activators. Finally a quantitative model for PXR activation for a subset of these molecules was derived using a regression-tree approach combined with GA variable selection. This final model shows a predictive r2 of 0.774 for the test set and 0.452 for an external set of 33 molecules. Thus, the combination of these filters consistently provide guidelines for lowering PXR activation in novel candidate molecules. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2012.04.020 |