Needle-free jet injection using real-time controlled linear Lorentz-force actuators

Abstract Needle-free drug delivery by jet injection is achieved by ejecting a liquid drug through a narrow orifice at high pressure, thereby creating a fine high-speed fluid jet that can readily penetrate skin and tissue. Until very recently, all jet injectors utilized force- and pressure-generating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2012-11, Vol.34 (9), p.1228-1235
Hauptverfasser: Taberner, Andrew, Hogan, N. Catherine, Hunter, Ian W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Needle-free drug delivery by jet injection is achieved by ejecting a liquid drug through a narrow orifice at high pressure, thereby creating a fine high-speed fluid jet that can readily penetrate skin and tissue. Until very recently, all jet injectors utilized force- and pressure-generating principles that progress injection in an uncontrolled manner with limited ability to regulate delivery volume and injection depth. In order to address these shortcomings, we have developed a controllable jet injection device, based on a custom high-stroke linear Lorentz-force motor that is feed-back controlled during the time-course of an injection. Using this device, we are able to monitor and modulate continuously the speed of the drug jet, and regulate precisely the volume of drug delivered during the injection process. We demonstrate our ability to control injection depth (up to 16 mm) and repeatably and precisely inject volumes of up to 250 μL into transparent gels and post-mortem animal tissue.
ISSN:1350-4533
1873-4030
DOI:10.1016/j.medengphy.2011.12.010