Estimating Geographic Variation in Allometric Growth and Body Condition of Blue Suckers with Quantile Regression

Increasing our understanding of how environmental factors affect fish body condition and improving its utility as a metric of aquatic system health require reliable estimates of spatial variation in condition (weight at length). We used three statistical approaches that varied in how they accounted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Fisheries Society (1900) 2011-11, Vol.140 (6), p.1657-1669
Hauptverfasser: Cade, Brian S., Terrell, James W., Neely, Ben C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing our understanding of how environmental factors affect fish body condition and improving its utility as a metric of aquatic system health require reliable estimates of spatial variation in condition (weight at length). We used three statistical approaches that varied in how they accounted for heterogeneity in allometric growth to estimate differences in body condition of blue suckers Cycleptus elongatus across 19 large‐river locations in the central USA. Quantile regression of an expanded allometric growth model provided the most comprehensive estimates, including variation in exponents within and among locations (range = 2.88–4.24). Blue suckers from more‐southerly locations had the largest exponents. Mixed‐effects mean regression of a similar expanded allometric growth model allowed exponents to vary among locations (range = 3.03–3.60). Mean relative weights compared across selected intervals of total length (TL = 510–594 and 594–692 mm) in a multiplicative model involved the implicit assumption that allometric exponents within and among locations were similar to the exponent (3.46) for the standard weight equation. Proportionate differences in the quantiles of weight at length for adult blue suckers (TL = 510, 594, 644, and 692 mm) compared with their average across locations ranged from 1.08 to 1.30 for southern locations (Texas, Mississippi) and from 0.84 to 1.00 for northern locations (Montana, North Dakota); proportionate differences for mean weight ranged from 1.13 to 1.17 and from 0.87 to 0.95, respectively, and those for mean relative weight ranged from 1.10 to 1.18 and from 0.86 to 0.98, respectively. Weights for fish at longer lengths varied by 600–700 g within a location and by as much as 2,000 g among southern and northern locations. Estimates for the Wabash River, Indiana (0.96–1.07 times the average; greatest increases for lower weights at shorter TLs), and for the Missouri River from Blair, Nebraska, to Sioux City, Iowa (0.90–1.00 times the average; greatest decreases for lower weights at longer TLs), were examined in detail to explain the additional information provided by quantile estimates.
ISSN:0002-8487
1548-8659
DOI:10.1080/00028487.2011.641885