Soil organic carbon stocks of conifers, broadleaf and evergreen broadleaf forests of Spain
Forests represent an important resource for mitigating the greenhouse effect, but which is the contributions of the different forest types in sequestering and keeping soil C for a longer time is still uncertain, particularly in the Mediterranean area. The aim of this work is to quantify the soil org...
Gespeichert in:
Veröffentlicht in: | Biology and fertility of soils 2012-10, Vol.48 (7), p.817-826 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Forests represent an important resource for mitigating the greenhouse effect, but which is the contributions of the different forest types in sequestering and keeping soil C for a longer time is still uncertain, particularly in the Mediterranean area. The aim of this work is to quantify the soil organic C (SOC) stock in the 0–30 and 0–100 cm depths of mineral soil, according to the main forest types—conifers, broadleaf and evergreen broadleaf—and the different climatic zones of Spain, using a database comprising records of 1,974 pedons. Conifers and broadleaf forests show a trend in SOC stock distribution, with the stocks decreasing with increasing Mediterranean conditions. On average, in the 0–30 cm depth, the soils under broadleaf store the highest amount of SOC (5.9 ± 0.1 kg m
−2
), followed by conifers (5.6 ± 0.1 kg m
−2
) and evergreen broadleaf soils with an amount always lower (3.4 ± 0.2 kg m
−2
). Climate and forest cover are the principal factors in determining the amount of SOC stored in Spanish forests. The significantly higher amount of SOC found in conifers and broadleaf forests than the evergreen broadleaf forests leads us to hypothesize a decrease in the SOC if climate change will increase drought periods with a consequent expansion of this latter forest type. Correlations between the SOC stocks under the different forest types, climate and soil features support the major role of climate and vegetation in controlling SOC sequestration in the Mediterranean area, while the effect of texture is less pronounced. Assigning a precise SOC stock to the different forest types, according to each climatic zone, would notably help to obtain an accurate SOC estimate at national level and for future assessments of the status of this large C reservoir. |
---|---|
ISSN: | 0178-2762 1432-0789 |
DOI: | 10.1007/s00374-012-0676-3 |