The Impact of Substrate Stiffness and Mechanical Loading on Fibroblast-Induced Scaffold Remodeling
Fibroblasts as many other cells are known to form, contract, and remodel the extracellular matrix (ECM). The presented study aims to gain an insight into how mechanical boundary conditions affect the production of ECM components, their remodeling, and the feedback of the altered mechanical cell envi...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2012-09, Vol.18 (17-18), p.184-1817 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fibroblasts as many other cells are known to form, contract, and remodel the extracellular matrix (ECM). The presented study aims to gain an insight into how mechanical boundary conditions affect the production of ECM components, their remodeling, and the feedback of the altered mechanical cell environment on these processes. The influence of cyclic mechanical loading (
f
=1 Hz, 10% axial compression) and scaffold stiffness (
E
=1.2 and 8.5 kPa) on the mechanical properties of fibroblast-seeded scaffold constructs were investigated in an
in vitro
approach over 14 days of culture. To do so, a newly developed bioreactor system was employed. While mechanical loading resulted in a clear upregulation of procollagen-I and fibronectin production, scaffold stiffness showed to primarily influence matrix metalloproteinase-1 (MMP-1) secretion and cell-induced scaffold contraction. Higher stiffness of the collagen scaffolds resulted in an up to twofold higher production of collagen-degrading MMP-1. The changes of mechanical parameters like Young's modulus, maximum compression force, and elastic portion of compression force over time suggest that from initially distinct mechanical starting conditions (scaffold stiffness), the construct's mechanical properties converge over time. As a consequence of mechanical loading a shift toward higher construct stiffness was observed. The results suggest that scaffold stiffness has only a temporary effect on cell behavior, while the impact of mechanical loading is preserved over time. Thus, it is concluded that the mechanical environment of the cell after remodeling is depending on mechanical loading rather than on initial scaffold stiffness. |
---|---|
ISSN: | 1937-3341 1937-335X |
DOI: | 10.1089/ten.tea.2011.0514 |