Groundwater flow model, recharge estimation and sustainability in an arid region of Patagonia, Argentina
The Península Valdés, in northeastern Patagonia, Argentina, is characterised by its arid climate and the lack of perennial watercourses; thus, all economic activities depend on the groundwater resources. Water demand is mainly associated with tourism, which is centralised in Puerto Pirámides and sup...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2012-08, Vol.66 (7), p.2097-2108 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Península Valdés, in northeastern Patagonia, Argentina, is characterised by its arid climate and the lack of perennial watercourses; thus, all economic activities depend on the groundwater resources. Water demand is mainly associated with tourism, which is centralised in Puerto Pirámides and supplied by a water desalination plant, and to sheep farming, supplied by the local aquifer. Due to the exponential growth of tourism, the government is planning to exploit groundwater and convey it by aqueduct to the abovementioned locality. The objectives of this study were to corroborate the conceptual geohydrological model, to develop a mathematical model to simulate the response of the aquifer to different scenarios, and to assess the incidence of water input into the system as a variable—a function that poses difficulties in the models for arid regions. The Visual Modflow 4.1 code was used, calibrating it in trial-and-error mode, changing the recharge and hydraulic conductivity parameters with different variants in the recharge zone and in the inclusion or exclusion of the evapotranspiration module. Results indicate the importance of the recharge analysis by treating rainfall at daily time steps. The adjusted model was exposed to four scenarios with variations in water input and in output by pumping. It can be concluded that under different input conditions, but with a controlled extraction, the system responds in a sustainable manner. |
---|---|
ISSN: | 1866-6280 1866-6299 |
DOI: | 10.1007/s12665-011-1435-8 |