Decade-scale coastal bluff retreat from LiDAR data: Lake Erie coast of NW Pennsylvania, USA
Bluff retreat is an ongoing problem on the southern Great Lakes coast of the United States where Pleistocene unconsolidated sediments overlie Devonian bedrock. This retreat results in loss of sediment from the coastal zone and a decrease in coastal water quality, and is of concern because evaluating...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2012-08, Vol.66 (7), p.1999-2012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bluff retreat is an ongoing problem on the southern Great Lakes coast of the United States where Pleistocene unconsolidated sediments overlie Devonian bedrock. This retreat results in loss of sediment from the coastal zone and a decrease in coastal water quality, and is of concern because evaluating landslide hazards and developing regulations on coastal construction setbacks must account for spatial variability in coastal retreat. The goal of this pilot study is to explain and quantify short to medium term spatial variability in bluff-retreat patterns, magnitudes, and rates along a 6 km littoral cell on the Pennsylvania coast of Lake Erie. High-resolution LiDAR data covering a one-decade time frame (1998–2007) permit mapping of the bluff-crest position on two comparable, high-quality data sets. The rates of bluff retreat range from unresolvable (~20% of coast) to 2.2 m/year, averaging 0.22 ± 0.1 m/year. Average-annual change rates and 9-year net movement values show an along-coast periodicity, with a spatial wavelength of ~1 km and an amplitude of 0.2 m/year. Observed variability is inferred to occur because variations in surface watershed size and groundwater recharge area, topographic shielding of the bluff from overland flow, and groundwater-table topography, cause groundwater discharge and overland flow to the bluff face to vary along the coast. In addition, short ravines ( |
---|---|
ISSN: | 1866-6280 1866-6299 |
DOI: | 10.1007/s12665-011-1425-x |