Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model
Volatile infochemicals including climatically relevant dimethylsulphide (DMS) have been suggested to play important roles in the structuring and functioning of marine food webs. Experimenting with complex natural plankton communities or several trophic levels in laboratory microcosms is challenging...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 2012-09, Vol.110 (1-3), p.303-313 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | 1-3 |
container_start_page | 303 |
container_title | Biogeochemistry |
container_volume | 110 |
creator | Lewis, Nicola D Breckels, Mark N Archer, Steve D Morozov, Andrew Pitchford, Jonathan W Steinke, Michael Codling, Edward A |
description | Volatile infochemicals including climatically relevant dimethylsulphide (DMS) have been suggested to play important roles in the structuring and functioning of marine food webs. Experimenting with complex natural plankton communities or several trophic levels in laboratory microcosms is challenging and, as a result, empirical data confirming the role of DMS in trophic interactions is lacking. Models are a suitable tool to provide insight into such complex interactions. Here we consider a model of the interactions between three trophic levels of plankton: phytoplankton, grazing microzooplankton and predatory mesozooplankton. We show that the inclusion of a grazing-induced DMS production term has a stabilizing effect on the system dynamics under the assumption that DMS acts as an info-chemical and increases the rate of mesozooplankton predation on grazing microzooplankton. We further demonstrate how this feedback between trophic levels can potentially lead to the formation of a phytoplankton bloom. The model provides a suitable framework for further study into the possible role of DMS in the ecology of marine food webs beyond its recognised role as a climate-cooling gas. |
doi_str_mv | 10.1007/s10533-011-9649-0 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1125227478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23359722</jstor_id><sourcerecordid>23359722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-2bd961446735cbaa8cd6d82f75a4bc9c5c6682331a6695de021c13f7211bc2c13</originalsourceid><addsrcrecordid>eNp1kUGL1TAUhYso-Bz9AS7EgAhuorlJk7RLGZ1RGHExDrgLaZq-l2eb1CRF3vyO-cHm2XEUwVUuud8598CpqqdAXgMh8k0CwhnDBAC3om4xuVdtgEuGOfCv96sNAdFgygV7WD1KaU8IaSVhm-rmPOpr57fY-X4xtkdzDGXILngUBvTu0yUy2qOUdedGd23REEKPf9gO9QevJ2cS0v6XagrZorw7EnHSvw3m3SGHedT-Wy4f3RjClJDzSKNpGbPLMcw7Z9AdMYXejo-rB4Mek31y-55UV2fvv5x-wBefzz-evr3ApqY8Y9r1rYC6FpJx02ndmF70DR0k13VnWsONEA1lDLQQLe8toWCADZICdIaW8aR6tfqW-N8Xm7KaXDJ2LGFsWJICoJxSWcumoC_-Qfdhib6kU0Aawtty6GgIK2ViSCnaQc3RTToeCqSOPam1J1V6UseeFCmal7fOOhk9DlF749KdkIqW1I1khaMrl8rKb238O8H_zZ-ton3KIf4xZYy3ktKyf77uBx2U3sZy-OqSEqgJAUZr2bKfgjS3MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080598231</pqid></control><display><type>article</type><title>Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model</title><source>SpringerLink Journals</source><source>Jstor Complete Legacy</source><creator>Lewis, Nicola D ; Breckels, Mark N ; Archer, Steve D ; Morozov, Andrew ; Pitchford, Jonathan W ; Steinke, Michael ; Codling, Edward A</creator><creatorcontrib>Lewis, Nicola D ; Breckels, Mark N ; Archer, Steve D ; Morozov, Andrew ; Pitchford, Jonathan W ; Steinke, Michael ; Codling, Edward A</creatorcontrib><description>Volatile infochemicals including climatically relevant dimethylsulphide (DMS) have been suggested to play important roles in the structuring and functioning of marine food webs. Experimenting with complex natural plankton communities or several trophic levels in laboratory microcosms is challenging and, as a result, empirical data confirming the role of DMS in trophic interactions is lacking. Models are a suitable tool to provide insight into such complex interactions. Here we consider a model of the interactions between three trophic levels of plankton: phytoplankton, grazing microzooplankton and predatory mesozooplankton. We show that the inclusion of a grazing-induced DMS production term has a stabilizing effect on the system dynamics under the assumption that DMS acts as an info-chemical and increases the rate of mesozooplankton predation on grazing microzooplankton. We further demonstrate how this feedback between trophic levels can potentially lead to the formation of a phytoplankton bloom. The model provides a suitable framework for further study into the possible role of DMS in the ecology of marine food webs beyond its recognised role as a climate-cooling gas.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-011-9649-0</identifier><identifier>CODEN: BIOGEP</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>algal blooms ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biogeochemistry ; Biogeosciences ; Biological and medical sciences ; dimethyl sulfide ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Ecological modeling ; Ecosystems ; Environmental Chemistry ; Exact sciences and technology ; External geophysics ; Food chains ; Food webs ; Fundamental and applied biological sciences. Psychology ; Geochemistry ; Grazing ; Life Sciences ; Marine ecology ; marine science ; Mathematical models ; Metabolites ; Mineralogy ; Mortality ; Physical and chemical properties of sea water ; Physics of the oceans ; Phytoplankton ; Plankton ; predation ; Sea water ecosystems ; Silicates ; Sulfide compounds ; Synecology ; Trajectories ; Trophic levels ; Trophic relationships ; Water geochemistry ; zooplankton</subject><ispartof>Biogeochemistry, 2012-09, Vol.110 (1-3), p.303-313</ispartof><rights>Springer Science+Business Media Dordrecht</rights><rights>Springer Science+Business Media B.V. 2011</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media Dordrecht 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-2bd961446735cbaa8cd6d82f75a4bc9c5c6682331a6695de021c13f7211bc2c13</citedby><cites>FETCH-LOGICAL-c425t-2bd961446735cbaa8cd6d82f75a4bc9c5c6682331a6695de021c13f7211bc2c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23359722$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23359722$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,799,23910,23911,25119,27903,27904,41467,42536,51297,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26904873$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Nicola D</creatorcontrib><creatorcontrib>Breckels, Mark N</creatorcontrib><creatorcontrib>Archer, Steve D</creatorcontrib><creatorcontrib>Morozov, Andrew</creatorcontrib><creatorcontrib>Pitchford, Jonathan W</creatorcontrib><creatorcontrib>Steinke, Michael</creatorcontrib><creatorcontrib>Codling, Edward A</creatorcontrib><title>Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>Volatile infochemicals including climatically relevant dimethylsulphide (DMS) have been suggested to play important roles in the structuring and functioning of marine food webs. Experimenting with complex natural plankton communities or several trophic levels in laboratory microcosms is challenging and, as a result, empirical data confirming the role of DMS in trophic interactions is lacking. Models are a suitable tool to provide insight into such complex interactions. Here we consider a model of the interactions between three trophic levels of plankton: phytoplankton, grazing microzooplankton and predatory mesozooplankton. We show that the inclusion of a grazing-induced DMS production term has a stabilizing effect on the system dynamics under the assumption that DMS acts as an info-chemical and increases the rate of mesozooplankton predation on grazing microzooplankton. We further demonstrate how this feedback between trophic levels can potentially lead to the formation of a phytoplankton bloom. The model provides a suitable framework for further study into the possible role of DMS in the ecology of marine food webs beyond its recognised role as a climate-cooling gas.</description><subject>algal blooms</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biogeochemistry</subject><subject>Biogeosciences</subject><subject>Biological and medical sciences</subject><subject>dimethyl sulfide</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Ecological modeling</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geochemistry</subject><subject>Grazing</subject><subject>Life Sciences</subject><subject>Marine ecology</subject><subject>marine science</subject><subject>Mathematical models</subject><subject>Metabolites</subject><subject>Mineralogy</subject><subject>Mortality</subject><subject>Physical and chemical properties of sea water</subject><subject>Physics of the oceans</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>predation</subject><subject>Sea water ecosystems</subject><subject>Silicates</subject><subject>Sulfide compounds</subject><subject>Synecology</subject><subject>Trajectories</subject><subject>Trophic levels</subject><subject>Trophic relationships</subject><subject>Water geochemistry</subject><subject>zooplankton</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUGL1TAUhYso-Bz9AS7EgAhuorlJk7RLGZ1RGHExDrgLaZq-l2eb1CRF3vyO-cHm2XEUwVUuud8598CpqqdAXgMh8k0CwhnDBAC3om4xuVdtgEuGOfCv96sNAdFgygV7WD1KaU8IaSVhm-rmPOpr57fY-X4xtkdzDGXILngUBvTu0yUy2qOUdedGd23REEKPf9gO9QevJ2cS0v6XagrZorw7EnHSvw3m3SGHedT-Wy4f3RjClJDzSKNpGbPLMcw7Z9AdMYXejo-rB4Mek31y-55UV2fvv5x-wBefzz-evr3ApqY8Y9r1rYC6FpJx02ndmF70DR0k13VnWsONEA1lDLQQLe8toWCADZICdIaW8aR6tfqW-N8Xm7KaXDJ2LGFsWJICoJxSWcumoC_-Qfdhib6kU0Aawtty6GgIK2ViSCnaQc3RTToeCqSOPam1J1V6UseeFCmal7fOOhk9DlF749KdkIqW1I1khaMrl8rKb238O8H_zZ-ton3KIf4xZYy3ktKyf77uBx2U3sZy-OqSEqgJAUZr2bKfgjS3MA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Lewis, Nicola D</creator><creator>Breckels, Mark N</creator><creator>Archer, Steve D</creator><creator>Morozov, Andrew</creator><creator>Pitchford, Jonathan W</creator><creator>Steinke, Michael</creator><creator>Codling, Edward A</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>H95</scope><scope>M7N</scope></search><sort><creationdate>20120901</creationdate><title>Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model</title><author>Lewis, Nicola D ; Breckels, Mark N ; Archer, Steve D ; Morozov, Andrew ; Pitchford, Jonathan W ; Steinke, Michael ; Codling, Edward A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-2bd961446735cbaa8cd6d82f75a4bc9c5c6682331a6695de021c13f7211bc2c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>algal blooms</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biogeochemistry</topic><topic>Biogeosciences</topic><topic>Biological and medical sciences</topic><topic>dimethyl sulfide</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Ecological modeling</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geochemistry</topic><topic>Grazing</topic><topic>Life Sciences</topic><topic>Marine ecology</topic><topic>marine science</topic><topic>Mathematical models</topic><topic>Metabolites</topic><topic>Mineralogy</topic><topic>Mortality</topic><topic>Physical and chemical properties of sea water</topic><topic>Physics of the oceans</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>predation</topic><topic>Sea water ecosystems</topic><topic>Silicates</topic><topic>Sulfide compounds</topic><topic>Synecology</topic><topic>Trajectories</topic><topic>Trophic levels</topic><topic>Trophic relationships</topic><topic>Water geochemistry</topic><topic>zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Nicola D</creatorcontrib><creatorcontrib>Breckels, Mark N</creatorcontrib><creatorcontrib>Archer, Steve D</creatorcontrib><creatorcontrib>Morozov, Andrew</creatorcontrib><creatorcontrib>Pitchford, Jonathan W</creatorcontrib><creatorcontrib>Steinke, Michael</creatorcontrib><creatorcontrib>Codling, Edward A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Nicola D</au><au>Breckels, Mark N</au><au>Archer, Steve D</au><au>Morozov, Andrew</au><au>Pitchford, Jonathan W</au><au>Steinke, Michael</au><au>Codling, Edward A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>110</volume><issue>1-3</issue><spage>303</spage><epage>313</epage><pages>303-313</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><coden>BIOGEP</coden><abstract>Volatile infochemicals including climatically relevant dimethylsulphide (DMS) have been suggested to play important roles in the structuring and functioning of marine food webs. Experimenting with complex natural plankton communities or several trophic levels in laboratory microcosms is challenging and, as a result, empirical data confirming the role of DMS in trophic interactions is lacking. Models are a suitable tool to provide insight into such complex interactions. Here we consider a model of the interactions between three trophic levels of plankton: phytoplankton, grazing microzooplankton and predatory mesozooplankton. We show that the inclusion of a grazing-induced DMS production term has a stabilizing effect on the system dynamics under the assumption that DMS acts as an info-chemical and increases the rate of mesozooplankton predation on grazing microzooplankton. We further demonstrate how this feedback between trophic levels can potentially lead to the formation of a phytoplankton bloom. The model provides a suitable framework for further study into the possible role of DMS in the ecology of marine food webs beyond its recognised role as a climate-cooling gas.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s10533-011-9649-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-2563 |
ispartof | Biogeochemistry, 2012-09, Vol.110 (1-3), p.303-313 |
issn | 0168-2563 1573-515X |
language | eng |
recordid | cdi_proquest_miscellaneous_1125227478 |
source | SpringerLink Journals; Jstor Complete Legacy |
subjects | algal blooms Animal and plant ecology Animal, plant and microbial ecology Biogeochemistry Biogeosciences Biological and medical sciences dimethyl sulfide Earth and Environmental Science Earth Sciences Earth, ocean, space Ecological modeling Ecosystems Environmental Chemistry Exact sciences and technology External geophysics Food chains Food webs Fundamental and applied biological sciences. Psychology Geochemistry Grazing Life Sciences Marine ecology marine science Mathematical models Metabolites Mineralogy Mortality Physical and chemical properties of sea water Physics of the oceans Phytoplankton Plankton predation Sea water ecosystems Silicates Sulfide compounds Synecology Trajectories Trophic levels Trophic relationships Water geochemistry zooplankton |
title | Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grazing-induced%20production%20of%20DMS%20can%20stabilize%20food-web%20dynamics%20and%20promote%20the%20formation%20of%20phytoplankton%20blooms%20in%20a%20multitrophic%20plankton%20model&rft.jtitle=Biogeochemistry&rft.au=Lewis,%20Nicola%20D&rft.date=2012-09-01&rft.volume=110&rft.issue=1-3&rft.spage=303&rft.epage=313&rft.pages=303-313&rft.issn=0168-2563&rft.eissn=1573-515X&rft.coden=BIOGEP&rft_id=info:doi/10.1007/s10533-011-9649-0&rft_dat=%3Cjstor_proqu%3E23359722%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080598231&rft_id=info:pmid/&rft_jstor_id=23359722&rfr_iscdi=true |