Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model

Volatile infochemicals including climatically relevant dimethylsulphide (DMS) have been suggested to play important roles in the structuring and functioning of marine food webs. Experimenting with complex natural plankton communities or several trophic levels in laboratory microcosms is challenging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeochemistry 2012-09, Vol.110 (1-3), p.303-313
Hauptverfasser: Lewis, Nicola D, Breckels, Mark N, Archer, Steve D, Morozov, Andrew, Pitchford, Jonathan W, Steinke, Michael, Codling, Edward A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Volatile infochemicals including climatically relevant dimethylsulphide (DMS) have been suggested to play important roles in the structuring and functioning of marine food webs. Experimenting with complex natural plankton communities or several trophic levels in laboratory microcosms is challenging and, as a result, empirical data confirming the role of DMS in trophic interactions is lacking. Models are a suitable tool to provide insight into such complex interactions. Here we consider a model of the interactions between three trophic levels of plankton: phytoplankton, grazing microzooplankton and predatory mesozooplankton. We show that the inclusion of a grazing-induced DMS production term has a stabilizing effect on the system dynamics under the assumption that DMS acts as an info-chemical and increases the rate of mesozooplankton predation on grazing microzooplankton. We further demonstrate how this feedback between trophic levels can potentially lead to the formation of a phytoplankton bloom. The model provides a suitable framework for further study into the possible role of DMS in the ecology of marine food webs beyond its recognised role as a climate-cooling gas.
ISSN:0168-2563
1573-515X
DOI:10.1007/s10533-011-9649-0