In vitro antichlamydial activity of garenoxacin against Chlamydia trachomatis

Abstract Garenoxacin showed the most potent chlamydial activity against Chlamydia trachomatis D/UW-3/Cx among three tested quinolones and azithromycin. The DNA gyrase genes, gyrA and gyrB , of C. trachomatis D/UW-3/Cx were cloned and the GyrA and GyrB subunits of DNA gyrase protein were separately e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 2012-08, Vol.18 (4), p.428-435
Hauptverfasser: Futakuchi, Naoko, Nakatani, Masatoshi, Takahata, Masahiro, Mitsuyama, Junichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Garenoxacin showed the most potent chlamydial activity against Chlamydia trachomatis D/UW-3/Cx among three tested quinolones and azithromycin. The DNA gyrase genes, gyrA and gyrB , of C. trachomatis D/UW-3/Cx were cloned and the GyrA and GyrB subunits of DNA gyrase protein were separately expressed as histidine-tagged proteins in Escherichia coli . The mean 50% inhibitory concentration (IC50 ) of garenoxacin against the supercoiling activity of C. trachomatis D/UW-3/Cx gyrase was 2.9 ± 0.4 μg/ml, which was the most potent inhibitory activity against DNA gyrase among the quinolones tested in this study. At an extracellular concentration of 0.5 μg/ml, the cellular-to-extracellular concentration ratio of garenoxacin was 15.3 ± 1.3, equivalent to that of moxifloxacin and greater than that of levofloxacin. In a time-kill experiment, after exposure to garenoxacin at a concentration of 0.5 μg/ml at 0–6, 5–11, and 24–30 h after infection, the percentages of recoverable chlamydial inclusion-forming units were 11.1 ± 3.3, 0.6 ± 0.1, and 2.6 ± 0.5%, respectively. On transmission electron microscopy observation, after exposure to garenoxacin at 24–30 h after infection, some C. trachomatis elementary bodies remained in the inclusion body; however, the reticulate bodies were completely disrupted. In conclusion, garenoxacin is expected to be a useful quinolone in the treatment of infectious diseases caused by C. trachomatis.
ISSN:1341-321X
1437-7780
DOI:10.1007/s10156-011-0345-8