Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization
Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO 2 atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in hi...
Gespeichert in:
Veröffentlicht in: | Regional environmental change 2012-09, Vol.12 (3), p.407-419 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO
2
atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in higher impacts on agricultural crops in the Mediterranean area than in other regions. In this study, the cropping system models CERES-Wheat and CROPGRO-Tomato of the Decision Support System for Agrotechnology Transfer (DSSAT) were used to analyse the response of winter durum wheat (
Triticum aestivum
L
.
) and tomato (
Lycopersicon esculentum
Mill.) crops to climate change, irrigation and nitrogen fertilizer managements in one of most productive areas of Italy (i.e. Capitanata, Puglia). For this analysis, three climatic datasets were used: (1) a single dataset (50 km × 50 km) provided by the JRC European centre for the period 1975–2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030–2060) and +5°C (centred over 2070–2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). Adaptation strategies, such as irrigation and N fertilizer managements, have been investigated to either avoid or at least reduce the negative impacts induced by climate change impacts for both crops. Warmer temperatures were primarily shown to accelerate wheat and tomato phenology, thereby resulting in decreased total dry matter accumulation for both tomato and wheat under the +5°C future climate scenario. Under the +2°C scenario, dry matter accumulation and resulting yield were also reduced for tomato, whereas no negative yield effects were observed for winter durum wheat. In general, limiting the global mean temperature change of 2°C, the application of adaptation strategies (irrigation and nitrogen fertilization) showed a positive effect in minimizing the negative impacts of climate change on productivity of tomato cultivated in southern Italy. |
---|---|
ISSN: | 1436-3798 1436-378X |
DOI: | 10.1007/s10113-011-0256-3 |