Computer simulation of ECG manifestations of left ventricular electrical remodeling
Abstract An increased QRS voltage is considered to be specific for the electrocardiogram (ECG) diagnosis of left ventricular hypertrophy (LVH). However, the QRS-complex patterns in patients with LVH cover a broader spectrum: increased QRS voltage, prolonged QRS duration, left axis deviation, and lef...
Gespeichert in:
Veröffentlicht in: | Journal of electrocardiology 2012-11, Vol.45 (6), p.630-634 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract An increased QRS voltage is considered to be specific for the electrocardiogram (ECG) diagnosis of left ventricular hypertrophy (LVH). However, the QRS-complex patterns in patients with LVH cover a broader spectrum: increased QRS voltage, prolonged QRS duration, left axis deviation, and left anterior fascicular block– and left bundle branch block–like patterns, as well as pseudo-normal QRS patterns. The classical interpretation of the QRS patterns in LVH relates these changes to increased left ventricular mass (LVM) per se, while tending to neglect the modified active and passive electrical properties of the myocardium. However, it has been well documented that both active and passive electrical properties in LVH are altered. Using computer simulations, we have shown that an increased LVM is not the only determinant of QRS complex changes in LVH, as these changes could also be produced without changing the left ventricular mass, implying that these QRS patterns can be present in patients before their LVM exceeds the arbitrary upper normal limits. Our results link the experimental evidence on electrical remodeling with clinical interpretation of ECG changes in patients with LVH and stress the necessity of a complex interpretation of the QRS patterns considering both spatial and nonspatial determinants in terms of the spatial angle theory. We assume that hypertrophic electrical remodeling in combination with changes in left ventricular size and shape explains the variety of ECG patterns as well as the discrepancies between ECG and left ventricular mass. |
---|---|
ISSN: | 0022-0736 1532-8430 |
DOI: | 10.1016/j.jelectrocard.2012.07.009 |