A Native-Chemical-Ligation-Mechanism-Based Ratiometric Fluorescent Probe for Aminothiols

Thiol‐containing amino acids (aminothiols) such as cysteine (Cys) and homocysteine (Hcy) play a key role in various biological processes including maintaining the homeostasis of biological thiols. However, abnormal levels of aminothiols are associated with a variety of diseases. The native chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2012-11, Vol.18 (45), p.14520-14526
Hauptverfasser: Yuan, Lin, Lin, Weiying, Xie, Yinan, Zhu, Sasa, Zhao, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thiol‐containing amino acids (aminothiols) such as cysteine (Cys) and homocysteine (Hcy) play a key role in various biological processes including maintaining the homeostasis of biological thiols. However, abnormal levels of aminothiols are associated with a variety of diseases. The native chemical ligation (NCL) reaction has attracted great attention in the fields of chemistry and biology. NCL of peptide segments involves cascade reactions between a peptide‐α‐thioester and an N‐terminal cysteine peptide. In this work, we employed the NCL reaction mechanism to formulate a Förster resonance energy transfer (FRET) strategy for the design of ratiometric fluorescent probes that were selective toward aminothiols. On the basis of this new strategy, the ratiometric fluorescent probe 1 for aminothiols was judiciously designed. The new probe is highly selective toward aminothiols over other thiols and exhibits a very large variation (up to 160‐fold) in its fluorescence ratio (I458/I603). The new fluorescent probe is capable of ratiometric detection of aminothiols in newborn calf and human serum samples and is also suitable for ratiometric fluorescent imaging of aminothiols in living cells. Going native: A ratiometric fluorescent probe for aminothiols has been designed based on the native chemical ligation (NCL) reaction mechanism (see scheme). The probe is highly selective toward aminothiols over other thiols and exhibits a very large variation (up to 160‐fold) in the fluorescence ratio (I458/I603).
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201201606