Construction of Hollow and Mesoporous ZnO Microsphere: A Facile Synthesis and Sensing Property
Mesoporous and hollow structure have been attracting increasing attention for their special properties and potential applications. Here we show a facile fabrication of hollow and mesoporous ZnO microsphere via a one-step wet chemical process using polyethylene glycol (PEG, MW 200) as the solvent and...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2012-10, Vol.4 (10), p.5346-5352 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mesoporous and hollow structure have been attracting increasing attention for their special properties and potential applications. Here we show a facile fabrication of hollow and mesoporous ZnO microsphere via a one-step wet chemical process using polyethylene glycol (PEG, MW 200) as the solvent and soft template. The morphology and structure of the products were characterized by using scanning electron microscopy and X-ray powder diffraction techniques. Thermal analysis and Fourier transform infrared spectroscopy techniques were also performed to show the properties of the precursor and annealed product. A possible growth mechanism of hollow and mesoporous ZnO microsphere was also proposed. The Brunauer–Emmett–Teller surface area of ZnO microsphere is 28.5 m2g–1 and the size of mesopores is about 10 nm. The Photoluminescence spectra of the as-synthesized ZnO hollow microspheres were also presented. The mesoporous and hollow structure enhance the gas sensitivity of ZnO microsphere, and the obtained ZnO microspheres based sensor has an excellent performance for precision detection of ethanol and acetone with low concentration. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am3012966 |