Effect of stem length on prosthetic radial head micromotion
Background Osteointegration of press-fit radial head implants is achieved by limiting micromotion between the stem and bone. Aspects of stem design that contribute to the enhancement of initial stability (ie, stem diameter and surface coating) have been investigated. The importance of total prosthes...
Gespeichert in:
Veröffentlicht in: | Journal of shoulder and elbow surgery 2012-11, Vol.21 (11), p.1559-1564 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Osteointegration of press-fit radial head implants is achieved by limiting micromotion between the stem and bone. Aspects of stem design that contribute to the enhancement of initial stability (ie, stem diameter and surface coating) have been investigated. The importance of total prosthesis length and level of the neck cut has not been examined. Methods Cadaveric radii were implanted with cementless, porous-coated radial head stems. We resected 10, 12, 15, 20, and 25 mm of radial neck in each specimen. Stem-bone micromotion was measured after each cut. Values were expressed in terms of quotients (cantilever quotient). Results A threshold effect was observed at 15 mm of neck resection (cantilever quotient, 0.4), with a significant increase in micromotion observed between 12 mm (40 ± 10 μm) and 15 mm (80 ± 25 μm). A cantilever quotient of 0.35 or less predicted implant stability, whereas implants with a cantilever quotient of 0.6 or more were unstable. In between, the stems were “at risk” of instability. Conclusion Initial stem stability of a porous-coated, cementless radial head implant is dependent on length of the implant stem within bone and the level of the cut (amount of bone resected). Stability may be compromised by an implant with a combined head and neck length that is too long compared with the stem length within the canal. We found a critical ratio of exposed prosthesis to total implant length (cantilever quotient of 0.4), which puts the prosthesis at risk of inadequate initial stability. These data carry important implications for implant design and use. |
---|---|
ISSN: | 1058-2746 1532-6500 |
DOI: | 10.1016/j.jse.2011.11.025 |