Quantum magnetomechanics: ultrahigh-Q-levitated mechanical oscillators
Engineering nanomechanical quantum systems possessing ultralong motional coherence times allows for applications in precision quantum sensing and quantum interfaces, but to achieve ultrahigh motional Q one must work hard to remove all forms of motional noise and heating. We examine a magneto-meso-me...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-10, Vol.109 (14), p.147206-147206, Article 147206 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Engineering nanomechanical quantum systems possessing ultralong motional coherence times allows for applications in precision quantum sensing and quantum interfaces, but to achieve ultrahigh motional Q one must work hard to remove all forms of motional noise and heating. We examine a magneto-meso-mechanical quantum system that consists of a 3D arrangement of miniature superconducting loops which is stably levitated in a static inhomogeneous magnetic field. The motional decoherence is predominantly due to loss from induced eddy currents in the magnetized sphere which provides the trapping field ultimately yielding Q∼10(9) with motional oscillation frequencies of several hundreds of kilohertz. By inductively coupling this levitating object to a nearby driven flux qubit one can cool its motion very close to the ground state and this may permit the generation of macroscopic entangled motional states of multiple clusters. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.109.147206 |