Nonlinearity in Forecasting of High-Frequency Stock Returns

Using high-frequency S&P 500 data, we examined intraday efficiency by comparing the ability of several nonlinear models to forecast returns for horizons of 5, 10, 30 and 60 min. Taking into account fat tails and volatility dynamics, we compared the forecasting performance of simple random walk a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2012-10, Vol.40 (3), p.245-264
Hauptverfasser: Reboredo, Juan C., Matías, José M., Garcia-Rubio, Raquel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using high-frequency S&P 500 data, we examined intraday efficiency by comparing the ability of several nonlinear models to forecast returns for horizons of 5, 10, 30 and 60 min. Taking into account fat tails and volatility dynamics, we compared the forecasting performance of simple random walk and autoregressive models with Markov switching, artificial neural network and support vector machine regression models in terms of both statistical and economic criteria. Our empirical results for out-of-sample forecasts for high and low volatility samples at different time periods provide weak evidence of intraday predictability in terms of statistical criteria, but corroborate the superiority of nonlinear model predictability using economic criteria such as trading rule profitability and value-at-risk calculations.
ISSN:0927-7099
1572-9974
DOI:10.1007/s10614-011-9288-5