Contribution of Higher-Order Nonlinearity to obliquely electron-acoustic solitary waves in a magnetized auroral zone plasma
Using the Viking Satellite observations data in the dayside auroral zone, a theoretical investigation is carried out for contribution of the higher-order nonlinearity to nonlinear obliquely electron-acoustic solitary waves (EASWs) in a magnetized collisionless plasma consisting of a cold electron fl...
Gespeichert in:
Veröffentlicht in: | Astrophysics and space science 2012-10, Vol.341 (2), p.491-500 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the Viking Satellite observations data in the dayside auroral zone, a theoretical investigation is carried out for contribution of the higher-order nonlinearity to nonlinear obliquely electron-acoustic solitary waves (EASWs) in a magnetized collisionless plasma consisting of a cold electron fluid and non-thermal hot electrons obeying a non-thermal distribution, and stationary ions. A Zakharov–Kuznetsov (ZK) equation that contains the lowest-order nonlinearity and dispersion is derived from the lowest order of perturbation and a linear inhomogeneous (ZK-type) equation that accounts for the higher-order nonlinearity and dispersion is obtained. A stationary solution for equations resulting from higher-order perturbation theory has been found using the renormalization method. The effects of the external magnetic field and the obliqueness are found to significantly change the higher-order properties (viz. the amplitude, width, electric field and energy) of the EASWs. The effect of higher-order nonlinearity on the amplitude and width of the soliton are also discussed. A comparison with the Viking Satellite observations in the dayside auroral zone are taken into account. |
---|---|
ISSN: | 0004-640X 1572-946X |
DOI: | 10.1007/s10509-012-1080-z |