Habitat-based spatial models of cetacean density in the eastern Pacific Ocean
Many users of the marine environment (e.g. military, seismic researchers, fisheries) conduct activities that can potentially harm cetaceans. In the USA, Environmental Assessments or Environmental Impact Statements evaluating potential impacts are required, and these must include information on the e...
Gespeichert in:
Veröffentlicht in: | Endangered species research 2012, Vol.16 (2), p.113-133 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many users of the marine environment (e.g. military, seismic researchers, fisheries) conduct activities that can potentially harm cetaceans. In the USA, Environmental Assessments or Environmental Impact Statements evaluating potential impacts are required, and these must include information on the expected number of cetaceans in specific areas where activities will occur. Typically, however, such information is only available for broad geographic regions, e.g. the entire West Coast of the United States. We present species-habitat models that estimate finer scale cetacean densities within the eastern Pacific Ocean. The models were developed and validated for 22 species or species groups, based on 15 large-scale shipboard cetacean and ecosystem assessment surveys conducted in the temperate and tropical eastern Pacific during the period from 1986 to 2006. Model development included consideration of different modeling frameworks, spatial and temporal resolutions of input variables, and spatial interpolation techniques. For the final models, expected group encounter rate and group size were modeled separately, using generalized additive models, as functions of environmental predictors, including bathymetry, distance to shore or isobaths, sea surface temperature (SST), variance in SST, salinity, chlorophyll, and mixed-layer depth. Model selection was performed using cross-validation on novel data. Smoothed maps of species density (and variance therein) were created from the final models for the California Current Ecosystem and eastern tropical Pacific Ocean. Model results were integrated into a web-interface that allows end-users to estimate densities for specified areas and provides fine-scale information for marine mammal assessments, monitoring, and mitigation. |
---|---|
ISSN: | 1863-5407 1613-4796 |
DOI: | 10.3354/esr00393 |