Simultaneous glycerol dehydration and in situhydrogenolysis over Cu-Al oxide under an inert atmosphere

Among various catalysts screened, the Cu-Al oxide catalyst, prepared by a co-precipitation method, exhibited excellent activity for simultaneous glycerol dehydration and its hydrogenolysis without external hydrogen. Detailed characterization by XRD, XPS, HR-TEM, TPR, etc., showed evidence of Cu supe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2012-10, Vol.14 (10), p.2780-2789
Hauptverfasser: Mane, Rasika B, Rode, Chandrashekhar V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among various catalysts screened, the Cu-Al oxide catalyst, prepared by a co-precipitation method, exhibited excellent activity for simultaneous glycerol dehydration and its hydrogenolysis without external hydrogen. Detailed characterization by XRD, XPS, HR-TEM, TPR, etc., showed evidence of Cu super(2+) in the form of CuO and CuAl sub(2)O sub(4), along with Cu super(0) and Cu super(1+) species, which are responsible for their multifunctional roles in glycerol APR, dehydration and hydrogenolysis reactions under inert conditions. This catalyst also presented consistent activity for a duration of 400 h for autogeneous hydrogenolysis of refined glycerol with 36% selectivity to 1,2-propanediol (1,2-PDO). Manipulating the temperature and feed flow rate conditions, meant that the selectivity to acetol and 1,2-PDO could be tailored as desired. Substantial enhancement in 1,2-PDO selectivity (75%) was achieved for an aqueous bio-glycerol feed over the same catalyst for 50 h of testing.
ISSN:1463-9262
1463-9270
DOI:10.1039/c2gc35661a