Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch

Quantized conductance was observed in a cation-migration-based resistive switching memory cell with a simple metal-insulator-metal (MIM) structure using a thin Ta2O5 layer. The observed conductance changes are attributed to the formation and dissolution of a metal filament with an atomic point conta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2012-11, Vol.23 (43), p.435705-435705
Hauptverfasser: Tsuruoka, Tohru, Hasegawa, Tsuyoshi, Terabe, Kazuya, Aono, Masakazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435705
container_issue 43
container_start_page 435705
container_title Nanotechnology
container_volume 23
creator Tsuruoka, Tohru
Hasegawa, Tsuyoshi
Terabe, Kazuya
Aono, Masakazu
description Quantized conductance was observed in a cation-migration-based resistive switching memory cell with a simple metal-insulator-metal (MIM) structure using a thin Ta2O5 layer. The observed conductance changes are attributed to the formation and dissolution of a metal filament with an atomic point contact of different integer multiples in the Ta2O5 layer. The results demonstrate that atomic point contacts can be realized in an oxide-based MIM structure that functions as a nanogap-based atomic switch (Terabe et al 2005 Nature 433 47). By applying consecutive voltage pulses at periodic intervals of different times, we also observed an effect analogous to the long-term potentiation of biological synapses, which shows that the oxide-based atomic switch has potential for use as an essential building block of neural computing systems.
doi_str_mv 10.1088/0957-4484/23/43/435705
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1111861379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1111861379</sourcerecordid><originalsourceid>FETCH-LOGICAL-i250t-1460e5e26fcefbb6281c21bbf4d13694d6cab3ea03d7ba1453692bbcd96215023</originalsourceid><addsrcrecordid>eNo9kEtLAzEQgIMotlb_Qtmjl7V57-5Rii-o9FLPIa-lKd2k3WSV-uvNYnUYGJj5Zhg-AOYIPiBY1wvYsKqktKYLTBZ0TFZBdgGmiHBUcobrSzD9hybgJsYdhAjVGF2DCSaQNQ2jU_C-DN4MOkmvbXEcpE_uWyYXfCG9KeLJy0NyulB2Kz9d6AuXB8VG4jUrlYzWFDKFLgPxyyW9vQVXrdxHe3euM_Dx_LRZvpar9cvb8nFVOsxgKhHl0DKLeattqxTHNdIYKdVSk99vqOFaKmIlJKZSElGWm1gpbRqOEYOYzMD9791DH46DjUl0Lmq730tvwxAFylFzRKomo_MzOqjOGnHoXSf7k_hTkAH8C7hwELsw9D5_LhAUo2cxKhSjwrwg6JijZ_IDSuVtKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1111861379</pqid></control><display><type>article</type><title>Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch</title><source>MEDLINE</source><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Tsuruoka, Tohru ; Hasegawa, Tsuyoshi ; Terabe, Kazuya ; Aono, Masakazu</creator><creatorcontrib>Tsuruoka, Tohru ; Hasegawa, Tsuyoshi ; Terabe, Kazuya ; Aono, Masakazu</creatorcontrib><description>Quantized conductance was observed in a cation-migration-based resistive switching memory cell with a simple metal-insulator-metal (MIM) structure using a thin Ta2O5 layer. The observed conductance changes are attributed to the formation and dissolution of a metal filament with an atomic point contact of different integer multiples in the Ta2O5 layer. The results demonstrate that atomic point contacts can be realized in an oxide-based MIM structure that functions as a nanogap-based atomic switch (Terabe et al 2005 Nature 433 47). By applying consecutive voltage pulses at periodic intervals of different times, we also observed an effect analogous to the long-term potentiation of biological synapses, which shows that the oxide-based atomic switch has potential for use as an essential building block of neural computing systems.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/23/43/435705</identifier><identifier>PMID: 23059954</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Biomimetics ; Electric Conductivity ; Models, Biological ; Oxides - chemistry ; Synapses - physiology ; Tantalum - chemistry</subject><ispartof>Nanotechnology, 2012-11, Vol.23 (43), p.435705-435705</ispartof><rights>2012 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/23/43/435705/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27926,27927,53848,53895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23059954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuruoka, Tohru</creatorcontrib><creatorcontrib>Hasegawa, Tsuyoshi</creatorcontrib><creatorcontrib>Terabe, Kazuya</creatorcontrib><creatorcontrib>Aono, Masakazu</creatorcontrib><title>Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>Quantized conductance was observed in a cation-migration-based resistive switching memory cell with a simple metal-insulator-metal (MIM) structure using a thin Ta2O5 layer. The observed conductance changes are attributed to the formation and dissolution of a metal filament with an atomic point contact of different integer multiples in the Ta2O5 layer. The results demonstrate that atomic point contacts can be realized in an oxide-based MIM structure that functions as a nanogap-based atomic switch (Terabe et al 2005 Nature 433 47). By applying consecutive voltage pulses at periodic intervals of different times, we also observed an effect analogous to the long-term potentiation of biological synapses, which shows that the oxide-based atomic switch has potential for use as an essential building block of neural computing systems.</description><subject>Biomimetics</subject><subject>Electric Conductivity</subject><subject>Models, Biological</subject><subject>Oxides - chemistry</subject><subject>Synapses - physiology</subject><subject>Tantalum - chemistry</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtLAzEQgIMotlb_Qtmjl7V57-5Rii-o9FLPIa-lKd2k3WSV-uvNYnUYGJj5Zhg-AOYIPiBY1wvYsKqktKYLTBZ0TFZBdgGmiHBUcobrSzD9hybgJsYdhAjVGF2DCSaQNQ2jU_C-DN4MOkmvbXEcpE_uWyYXfCG9KeLJy0NyulB2Kz9d6AuXB8VG4jUrlYzWFDKFLgPxyyW9vQVXrdxHe3euM_Dx_LRZvpar9cvb8nFVOsxgKhHl0DKLeattqxTHNdIYKdVSk99vqOFaKmIlJKZSElGWm1gpbRqOEYOYzMD9791DH46DjUl0Lmq730tvwxAFylFzRKomo_MzOqjOGnHoXSf7k_hTkAH8C7hwELsw9D5_LhAUo2cxKhSjwrwg6JijZ_IDSuVtKA</recordid><startdate>20121102</startdate><enddate>20121102</enddate><creator>Tsuruoka, Tohru</creator><creator>Hasegawa, Tsuyoshi</creator><creator>Terabe, Kazuya</creator><creator>Aono, Masakazu</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20121102</creationdate><title>Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch</title><author>Tsuruoka, Tohru ; Hasegawa, Tsuyoshi ; Terabe, Kazuya ; Aono, Masakazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i250t-1460e5e26fcefbb6281c21bbf4d13694d6cab3ea03d7ba1453692bbcd96215023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biomimetics</topic><topic>Electric Conductivity</topic><topic>Models, Biological</topic><topic>Oxides - chemistry</topic><topic>Synapses - physiology</topic><topic>Tantalum - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuruoka, Tohru</creatorcontrib><creatorcontrib>Hasegawa, Tsuyoshi</creatorcontrib><creatorcontrib>Terabe, Kazuya</creatorcontrib><creatorcontrib>Aono, Masakazu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuruoka, Tohru</au><au>Hasegawa, Tsuyoshi</au><au>Terabe, Kazuya</au><au>Aono, Masakazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2012-11-02</date><risdate>2012</risdate><volume>23</volume><issue>43</issue><spage>435705</spage><epage>435705</epage><pages>435705-435705</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Quantized conductance was observed in a cation-migration-based resistive switching memory cell with a simple metal-insulator-metal (MIM) structure using a thin Ta2O5 layer. The observed conductance changes are attributed to the formation and dissolution of a metal filament with an atomic point contact of different integer multiples in the Ta2O5 layer. The results demonstrate that atomic point contacts can be realized in an oxide-based MIM structure that functions as a nanogap-based atomic switch (Terabe et al 2005 Nature 433 47). By applying consecutive voltage pulses at periodic intervals of different times, we also observed an effect analogous to the long-term potentiation of biological synapses, which shows that the oxide-based atomic switch has potential for use as an essential building block of neural computing systems.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>23059954</pmid><doi>10.1088/0957-4484/23/43/435705</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2012-11, Vol.23 (43), p.435705-435705
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_1111861379
source MEDLINE; HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals
subjects Biomimetics
Electric Conductivity
Models, Biological
Oxides - chemistry
Synapses - physiology
Tantalum - chemistry
title Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductance%20quantization%20and%20synaptic%20behavior%20in%20a%20Ta2O5-based%20atomic%20switch&rft.jtitle=Nanotechnology&rft.au=Tsuruoka,%20Tohru&rft.date=2012-11-02&rft.volume=23&rft.issue=43&rft.spage=435705&rft.epage=435705&rft.pages=435705-435705&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/23/43/435705&rft_dat=%3Cproquest_pubme%3E1111861379%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1111861379&rft_id=info:pmid/23059954&rfr_iscdi=true