Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch
Quantized conductance was observed in a cation-migration-based resistive switching memory cell with a simple metal-insulator-metal (MIM) structure using a thin Ta2O5 layer. The observed conductance changes are attributed to the formation and dissolution of a metal filament with an atomic point conta...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2012-11, Vol.23 (43), p.435705-435705 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantized conductance was observed in a cation-migration-based resistive switching memory cell with a simple metal-insulator-metal (MIM) structure using a thin Ta2O5 layer. The observed conductance changes are attributed to the formation and dissolution of a metal filament with an atomic point contact of different integer multiples in the Ta2O5 layer. The results demonstrate that atomic point contacts can be realized in an oxide-based MIM structure that functions as a nanogap-based atomic switch (Terabe et al 2005 Nature 433 47). By applying consecutive voltage pulses at periodic intervals of different times, we also observed an effect analogous to the long-term potentiation of biological synapses, which shows that the oxide-based atomic switch has potential for use as an essential building block of neural computing systems. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/23/43/435705 |