Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis

Platinum alloy nanoparticles show great promise as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cell cathodes. We report here on the use of N,N-dimethylformamide (DMF) as both solvent and reductant in the solvothermal synthesis of Pt alloy nanoparticles (NPs), with a particular f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-05, Vol.134 (20), p.8535-8542
Hauptverfasser: Carpenter, Michael K, Moylan, Thomas E, Kukreja, Ratandeep Singh, Atwan, Mohammed H, Tessema, Misle M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Platinum alloy nanoparticles show great promise as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cell cathodes. We report here on the use of N,N-dimethylformamide (DMF) as both solvent and reductant in the solvothermal synthesis of Pt alloy nanoparticles (NPs), with a particular focus on Pt–Ni alloys. Well-faceted alloy nanocrystals were generated with this method, including predominantly cubic and cuboctahedral nanocrystals of Pt3Ni, and octahedral and truncated octahedral nanocrystals of PtNi. X-ray diffraction (XRD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), coupled with energy dispersive spectroscopy (EDS), were used to characterize crystallite morphology and composition. ORR activities of the alloy nanoparticles were measured with a rotating disk electrode (RDE) technique. While some Pt3Ni alloy nanoparticle catalysts showed specific activities greater than 1000 μA/cm2 Pt, alloy catalysts prepared with a nominal composition of PtNi displayed activities close to 3000 μA/cm2 Pt, or almost 15 times that of a state-of-the-art Pt/carbon catalyst. XRD and EDS confirmed the presence of two NP compositions in this catalyst. HAADF-STEM examination of the PtNi nanoparticle catalyst after RDE testing revealed the development of hollows in a number of the nanoparticles due to nickel dissolution. Continued voltage cycling caused further nickel dissolution and void formation, but significant activity remained even after 20 000 cycles.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja300756y