Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors
We propose and demonstrate a novel nanoscale resonant metal-semiconductor-metal (MSM) photodetector structure based on silicon fins self-aligned to metallic slits. This geometry allows the center wavelength of the photodetector's spectral response to be controlled by the silicon fin width, allo...
Gespeichert in:
Veröffentlicht in: | Optics express 2012-09, Vol.20 (20), p.22735-22742 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose and demonstrate a novel nanoscale resonant metal-semiconductor-metal (MSM) photodetector structure based on silicon fins self-aligned to metallic slits. This geometry allows the center wavelength of the photodetector's spectral response to be controlled by the silicon fin width, allowing multiple detectors, each sensitive to a different wavelength, to be fabricated in a single-step process. In addition, the detectors are highly efficient with simulations showing ~67% of the light (λ = 800 nm) incident on the silicon fin being absorbed in a region of thickness ~170 nm whereas the absorption length at the same wavelength is ~10 µm. This approach is promising for the development of multispectral imaging sensors and low-capacitance photodetectors for short-range optical interconnects. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.20.022735 |