One-Pot Functionalization of Graphene with Porphyrin through Cycloaddition Reactions
Two types of graphene‐based hybrid materials, graphene‐TPP (TPP=tetraphenylporphyrin) and graphene‐PdTPP (PdTPP=palladium tetraphenylporphyrin), were prepared directly from pristine graphene through one‐pot cycloaddition reactions. The hybrid materials were characterized by thermogravimetric analysi...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2011-08, Vol.17 (32), p.8957-8964 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two types of graphene‐based hybrid materials, graphene‐TPP (TPP=tetraphenylporphyrin) and graphene‐PdTPP (PdTPP=palladium tetraphenylporphyrin), were prepared directly from pristine graphene through one‐pot cycloaddition reactions. The hybrid materials were characterized by thermogravimetric analysis (TGA), by TEM, by UV/Vis, FTIR, Raman, and luminescence spectroscopy, and by fluorescence/phosphorescence lifetime measurements. The presence of the covalent linkages between graphene and porphyrin was confirmed by FTIR and Raman spectroscopy and further supported by control experiments. The presence of TPP (or PdTPP) in the hybrid material was demonstrated by UV/Vis spectroscopy, with TGA results indicating that the graphene‐TPP and graphene‐PdTPP hybrid materials contained approximately 18 % TPP and 20 % PdTPP. The quenching of fluorescence (or phosphorescence) and reduced lifetimes suggest excited state energy/electron transfer between graphene and the covalently attached TPP (or PdTPP) molecules.
Photoactive units on graphene: Two types of graphene‐based hybrid material, graphene‐TPP (TPP=tetraphenylporphyrin) and graphene‐PdTPP (PdTPP=palladium tetraphenylporphyrin), were prepared directly from pristine graphene through one‐pot cycloaddition reactions (see scheme). In view of the unique properties of both graphene and porphyrin, these two hybrid materials might have potential applications in a number of areas, such as solar cells and sensors. |
---|---|
ISSN: | 0947-6539 1521-3765 |
DOI: | 10.1002/chem.201100980 |