Artificial Signal Transduction with Primary and Secondary Messengers

The complete, entirely artificial, signal‐transduction process was realized with a pair of tailored transmembrane units that were equipped with receptor‐ and reactive sites at both amphiphilic ends. Thus, docking of the primary messenger, transmission of the signal, and release of the secondary mess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2012-10, Vol.18 (42), p.13412-13417
Hauptverfasser: Bernitzki, Kai, Maue, Michael, Schrader, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The complete, entirely artificial, signal‐transduction process was realized with a pair of tailored transmembrane units that were equipped with receptor‐ and reactive sites at both amphiphilic ends. Thus, docking of the primary messenger, transmission of the signal, and release of the secondary messenger could all be imitated in a single experimental setup. The system imitates the signaling principle of receptor tyrosine kinases and employs bisphosphonate head‐groups for oligoamine‐recognition and a pair of thiol nucleophiles and pyridine disulfide tail‐groups for intravesicle SN2 displacement. This system operates in a unidirectional fashion, does not suffer from intervesicle competition, and is highly sensitive towards the lipid composition of the membrane and the nature of the primary messenger. Don't shoot the messenger: The complete process of entirely artificial signal transduction was realized with a pair of tailored transmembrane units that were equipped with receptor and reactive sites at both amphiphilic ends (see figure). Thus, docking of the primary messenger, transmission of the signal, and release of the secondary messenger could all be imitated in a single experimental setup.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201200623