EMT-associated up-regulation of L1CAM provides insights into L1CAM-mediated integrin signalling and NF-κB activation

Expression of L1 cell adhesion molecule (L1CAM) is associated with poor prognosis in a variety of human carcinomas including breast, ovarian and pancreatic ductal adenocarcinoma (PDAC). Recently we reported that L1CAM induces sustained nuclear factor kappa B (NF-κB) activation by augmenting the auto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carcinogenesis (New York) 2012-10, Vol.33 (10), p.1919-1929
Hauptverfasser: KIEFEL, Helena, BONDONG, Sandra, PFEIFER, Marco, SCHIRMER, Uwe, ERBE-HOFFMANN, Natalie, SCHÄFER, Heiner, SEBENS, Susanne, ALTEVOGT, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Expression of L1 cell adhesion molecule (L1CAM) is associated with poor prognosis in a variety of human carcinomas including breast, ovarian and pancreatic ductal adenocarcinoma (PDAC). Recently we reported that L1CAM induces sustained nuclear factor kappa B (NF-κB) activation by augmenting the autocrine production of interleukin 1 beta (IL-1β), a process dependent on interaction of L1CAM with integrins. In the present study, we demonstrate that transforming growth factor β1 (TGF-β1) treatment of breast carcinoma (MDA-MB231) and PDAC (BxPc3) cell lines induces an EMT (epithelial to mesenchymal transition)-like phenotype and leads to the expression of L1CAM. In MDA-MB231 cells, up-regulation of L1CAM augmented expression of IL-1β and NF-κB activation, which was reversed by depletion of L1CAM, L1CAM-binding membrane cytoskeleton linker protein ezrin, β1-integrin or focal adhesion kinase (FAK). Over-expression of L1CAM not only induced NF-κB activation but also mediated the phosphorylation of FAK and Src. Phosphorylation was not induced in cells expressing a mutant form of L1CAM (L1-RGE) devoid of the integrin-binding site. FAK- and Src-phosphorylation were inhibited by knock-down of various components of the integrin signalling pathway such as β1- and α5-integrins, integrin-linked kinase (ILK), FAK and the phosphoinositide 3-kinase (PI3K) subunit p110β. In summary, these results reveal that during EMT, L1CAM promotes IL-1β expression through a process dependent on integrin signalling and supports a motile and invasive tumour cell phenotype. We also identify important novel downstream effector molecules of the L1CAM-integrin signalling crosstalk that help to understand the molecular mechanisms underlying L1CAM-promoted tumour progression.
ISSN:0143-3334
1460-2180
DOI:10.1093/carcin/bgs220