Remarkable consistency of exon-intron structure of hatching enzyme genes and molecular phylogenetic relationships of teleostean fishes
The phylogenetic positions of various fishes in the Teleostei are frequently confused. One such confusion is in the phylogenetic relationships among Salmoniformes, Esociformes, Osmeriformes, Argentiniformes and Alepocephaliformes. While morphology-based phylogenetic studies suggested that all of the...
Gespeichert in:
Veröffentlicht in: | Environmental biology of fishes 2012-07, Vol.94 (3), p.567-576 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phylogenetic positions of various fishes in the Teleostei are frequently confused. One such confusion is in the phylogenetic relationships among Salmoniformes, Esociformes, Osmeriformes, Argentiniformes and Alepocephaliformes. While morphology-based phylogenetic studies suggested that all of these belong to Euteleostei, molecule-based phylogenetic analyses indicated that the former four orders belong to the Euteleostei, and the Alepocephaliformes to the Otocephala. In addition, the phylogenetic relationships among the former four orders have not been established: morphological studies have proposed various hypotheses, while molecular analyses have suggested esociforms and salmoniforms to be sister groups at the basal position in euteleosts. In this study, we examined their controversial phylogenetic positions using exon-intron structures of hatching enzyme genes. The gene structures of alepocephaliforms were characteristic to those of lower otocephalans. Those of argentiniforms and osmeriforms were the same as those of higher euteleosts, but different from those of salmoniforms and esociforms. The results suggest that alepocephaliforms are closely related to otocephalans, and salmoniforms form a sister group to esociforms in euteleosts. Therefore, changes in exon-intron structure of hatching enzyme genes correspond well with the molecular phylogenetic relationship estimated from mitochondrial DNA sequences. |
---|---|
ISSN: | 0378-1909 1573-5133 |
DOI: | 10.1007/s10641-011-9920-1 |