Protein encapsulation within synthetic molecular hosts
Protein encapsulation has long attracted many chemists and biologists because of its potential to control the structure and functions of proteins, but has been a daunting challenge because of their incommensurably larger size compared with common synthetic hosts. Here we report the encapsulation of...
Gespeichert in:
Veröffentlicht in: | Nature communications 2012-10, Vol.3 (1), p.1093-1093, Article 1093 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein encapsulation has long attracted many chemists and biologists because of its potential to control the structure and functions of proteins, but has been a daunting challenge because of their incommensurably larger size compared with common synthetic hosts. Here we report the encapsulation of a small protein, ubiquitin, within giant coordination cages. The protein was attached to one bidentate ligand and, upon addition of Pd(II) ions (M) and additional ligands (L), M
12
L
24
coordination nanocages self-assembled around the protein. Because of the well-defined host framework, the protein-encapsulated structure could be analysed by NMR spectroscopy, ultracentrifugation and X-ray crystallography.
Protein encapsulation in molecular cages has the potential to alter protein function and aid crystallization. Here, ubiquitin is encapsulated within a giant coordination cage; the protein is attached to a bidentate ligand, and the cage self-assembles upon addition of capping ligands and Pd(II) ions. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms2093 |