The Effect of Monomer Order on the Hydrolysis of Biodegradable Poly(lactic-co-glycolic acid) Repeating Sequence Copolymers

The effect of sequence on copolymer properties is rarely studied despite the precedent from Nature that monomer order can create materials of significant diversity. Poly(lactic-co-glycolic acid) (PLGA), one of the most important biodegradable copolymers, is widely used in an unsequenced, random form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-10, Vol.134 (39), p.16352-16359
Hauptverfasser: Li, Jian, Rothstein, Sam N, Little, Steven R, Edenborn, Harry M, Meyer, Tara Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of sequence on copolymer properties is rarely studied despite the precedent from Nature that monomer order can create materials of significant diversity. Poly(lactic-co-glycolic acid) (PLGA), one of the most important biodegradable copolymers, is widely used in an unsequenced, random form for both drug delivery microparticles and tissue engineering matrices. Sequenced PLGA copolymers have been synthesized and fabricated into microparticles to study how their hydrolysis rates compare to those of random copolymers. Sequenced PLGA microparticles were found to degrade at slower, and often more constant, rates than random copolymers with the same lactic to glycolic acid ratios as demonstrated by molecular weight decrease, lactic acid release, and thermal property analyses. The impact of copolymer sequence on in vitro release was studied using PLGA microparticles loaded with model agent rhodamine-B. These assays established that copolymer sequence affects the rate of release and that a more gradual burst release can be achieved using sequenced copolymers compared to a random control.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja306866w