Dissecting Functions of KATANIN and WRINKLED1 in Cotton Fiber Development by Virus-Induced Gene Silencing

Most of the world's natural fiber comes from cotton (Gossypium spp.), which is an important crop worldwide. Characterizing genes that regulate cotton yield and fiber quality is expected to benefit the sustainable production of natural fiber. Although a huge number of expressed sequence tag sequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2012-10, Vol.160 (2), p.738-748
Hauptverfasser: Qu, Jing, Ye, Jian, Geng, Yun-Feng, Sun, Yan-Wei, Gao, Shi-Qiang, Zhang, Bi-Pei, Chen, Wen, Chua, Nam-Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most of the world's natural fiber comes from cotton (Gossypium spp.), which is an important crop worldwide. Characterizing genes that regulate cotton yield and fiber quality is expected to benefit the sustainable production of natural fiber. Although a huge number of expressed sequence tag sequences are now available in the public database, large-scale gene function analysis has been hampered by the low-efficiency process of generating transgenic cotton plants. Tobacco rattle virus (TRV) has recently been reported to trigger virus-induced gene silencing (VIGS) in cotton leaves. Here, we extended the utility of this method by showing that TRV-VIGS can operate in reproductive organs as well. We used this method to investigate the function of KATANIN and WRINKLED1 in cotton plant development. Cotton plants with suppressed KATANIN expression produced shorter fibers and elevated weight ratio of seed oil to endosperm. By contrast, silencing of WRINKLED1 expression resulted in increased fiber length but reduced oil seed content, suggesting the possibility to increase fiber length by repartitioning carbon flow. Our results provide evidence that the TRV-VIGS system can be used for rapid functional analysis of genes involved in cotton fiber development.
ISSN:0032-0889
1532-2548
1532-2548
DOI:10.1104/pp.112.198564