In Situ STM Investigation of Aromatic Poly(azomethine) Arrays Constructed by “On-Site” Equilibrium Polymerization

Two-dimensional (2D) arrays of π-conjugated aromatic polymers produced by surface-selective Schiff base coupling reactions between an aromatic diamine and an aromatic dialdehyde were investigated in detail using in situ scanning tunneling microscopy. Surface-selective coupling was achieved for almos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-10, Vol.28 (39), p.13844-13851
Hauptverfasser: Tanoue, Ryota, Higuchi, Rintaro, Ikebe, Kiryu, Uemura, Shinobu, Kimizuka, Nobuo, Stieg, Adam Z, Gimzewski, James K, Kunitake, Masashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional (2D) arrays of π-conjugated aromatic polymers produced by surface-selective Schiff base coupling reactions between an aromatic diamine and an aromatic dialdehyde were investigated in detail using in situ scanning tunneling microscopy. Surface-selective coupling was achieved for almost all diamine/dialdehyde combinations attempted, although several combinations did not proceed even in homogeneous aqueous alkaline solution. Most of the combinations of an aromatic diamine and a dialdehyde, except the combinations of 4,4′-azodianiline with mono/bithiophenedicarboxaldehyde, formed highly ordered π-conjugated polymer arrays on an iodine-modified Au(111) surface in aqueous solution at a suitable pH. The simplest polymer of the various combinations tested, obtained from the combination of 1,4-diaminobenzene with terephthaldicarboxaldehyde, gave a 2D array consisting of linearly connected benzene units. Poly(azomethine) adlayers caused a positive shift in the electrochemical potential of the butterfly shaped oxidative adsorption and reductive desorption of iodine. The acceleration of the reductive desorption of iodine suggests the existence of a weak interaction between the polymer layer and iodine. Not only the first polymer adlayers but also partially adsorbed secondary adlayers with “on-top” epitaxial behavior were frequently observed for all polymer systems. The alignment of the polymer chains in the adlayers possessed a certain regularity in terms of a regular interval between polymer chains because of repulsive interpolymer interactions.
ISSN:0743-7463
1520-5827
DOI:10.1021/la302863h