Method for Estimation of Protein Isoelectric Point

Adsorption of sample protein to Eu3+ chelate-labeled nanoparticles is the basis of the developed noncompetitive and homogeneous method for the estimation of the protein isoelectric point (pI). The lanthanide ion of the nanoparticle surface-conjugated Eu3+ chelate is dissociated at a low pH, therefor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2012-10, Vol.84 (19), p.8253-8258
Hauptverfasser: Pihlasalo, Sari, Auranen, Laura, Hänninen, Pekka, Härmä, Harri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adsorption of sample protein to Eu3+ chelate-labeled nanoparticles is the basis of the developed noncompetitive and homogeneous method for the estimation of the protein isoelectric point (pI). The lanthanide ion of the nanoparticle surface-conjugated Eu3+ chelate is dissociated at a low pH, therefore decreasing the luminescence signal. A nanoparticle-adsorbed sample protein prevents the dissociation of the chelate, leading to a high luminescence signal. The adsorption efficiency of the sample protein is reduced above the isoelectric point due to the decreased electrostatic attraction between the negatively charged protein and the negatively charged particle. Four proteins with isoelectric points ranging from ∼5 to 9 were tested to show the performance of the method. These pI values measured with the developed method were close to the theoretical and experimental literature values. The method is sensitive and requires a low analyte concentration of submilligrams per liter, which is nearly 10000 times lower than the concentration required for the traditional isoelectric focusing. Moreover, the method is significantly faster and simpler than the existing methods, as a ready-to-go assay was prepared for the microtiter plate format. This mix-and-measure concept is a highly attractive alternative for routine laboratory work.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac301569b