Structure–electrical resistivity relationship of N-doped multi-walled carbon nanotubes

Nitrogen-doped multi-walled carbon nanotubes (N-MWCNT) were synthesized by means of catalytic chemical vapor deposition technique using acetonitrile as carbon source material and ferrocene as catalyst. The structure of the synthesized N-MWCNT was characterized by means of microscopic (SEM, HRTEM) as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2012-03, Vol.47 (5), p.2390-2395
Hauptverfasser: Ritter, U., Tsierkezos, N. G., Prylutskyy, Yu. I., Matzui, L. Yu, Gubanov, V. O., Bilyi, M. M., Davydenko, M. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrogen-doped multi-walled carbon nanotubes (N-MWCNT) were synthesized by means of catalytic chemical vapor deposition technique using acetonitrile as carbon source material and ferrocene as catalyst. The structure of the synthesized N-MWCNT was characterized by means of microscopic (SEM, HRTEM) as well as spectroscopic (FTIR, Raman) techniques. Furthermore, the specific resistivity and the electrochemical properties of N-MWCNT were investigated and compared with those of pristine MWCNT. The results are discussed in terms of structural differences between pristine MWCNT and N-MWCNT.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-011-6059-6