Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes

In this paper, the transition wavelength and wave function overlap of type-II In x Ga 1-x As/GaAs 1-y Sb y quantum wells are numerically calculated using a 4-band k · p Hamiltonian model. The simulation results indicate that absorption wavelength from 2 to 4  μ m can be achieved with a strain compen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2012-06, Vol.44 (3-5), p.103-109
Hauptverfasser: Chen, Baile, Jiang, W. Y., Holmes, A. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 3-5
container_start_page 103
container_title Optical and quantum electronics
container_volume 44
creator Chen, Baile
Jiang, W. Y.
Holmes, A. L.
description In this paper, the transition wavelength and wave function overlap of type-II In x Ga 1-x As/GaAs 1-y Sb y quantum wells are numerically calculated using a 4-band k · p Hamiltonian model. The simulation results indicate that absorption wavelength from 2 to 4  μ m can be achieved with a strain compensated quantum well structure. The transition wavelength and wave function overlap can be optimized by properly selecting the thicknesses and composition of the quantum well layers.
doi_str_mv 10.1007/s11082-011-9524-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082223315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082223315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-7fcc4b6191132f1136b19a8aa92d17833cacdd6ebe0e0609b2e1927142d76f073</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8spj67HyOVYESqRIDILFZju2UVI2d2olQ_z2Owszy3vI-p7sHoXugj0BpvgoAtGCEApAyZQmBC7SANGekgPzrEi0opxkpSiiv0U0IB0pplqR0gfZPJrR7i12Dw-Bla7FyXW9skIPRuLJbuQ6rKd5rPJx7Q6oKn0Zph7HDP-Z4nKhRDaM3ATfO467VpLWNlz7i_bcbnG6dNuEWXTXyGMzd31yiz5fnj80r2b1tq816RxRnMJC8USqpMygBOGtiZDWUspCyZBrygnMlldaZqQ01NKNlzQyULIeE6TxraM6X6GHe23t3Gk0YRNcGFQ-V1rgxiMkSY5xDGqswV5V3IXjTiN63nfTnWBKTVDFLFVGqmKQKiAybmRC7dm-8OLjR2_jRP9AvnZJ6dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082223315</pqid></control><display><type>article</type><title>Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Baile ; Jiang, W. Y. ; Holmes, A. L.</creator><creatorcontrib>Chen, Baile ; Jiang, W. Y. ; Holmes, A. L.</creatorcontrib><description>In this paper, the transition wavelength and wave function overlap of type-II In x Ga 1-x As/GaAs 1-y Sb y quantum wells are numerically calculated using a 4-band k · p Hamiltonian model. The simulation results indicate that absorption wavelength from 2 to 4  μ m can be achieved with a strain compensated quantum well structure. The transition wavelength and wave function overlap can be optimized by properly selecting the thicknesses and composition of the quantum well layers.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-011-9524-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Electrical Engineering ; Indium gallium arsenides ; Lasers ; Mathematical models ; Optical Devices ; Optics ; Photodiodes ; Photonics ; Physics ; Physics and Astronomy ; Quantum electronics ; Quantum wells ; Strain ; Wave functions ; Wavelengths</subject><ispartof>Optical and quantum electronics, 2012-06, Vol.44 (3-5), p.103-109</ispartof><rights>Springer Science+Business Media, LLC. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-7fcc4b6191132f1136b19a8aa92d17833cacdd6ebe0e0609b2e1927142d76f073</citedby><cites>FETCH-LOGICAL-c321t-7fcc4b6191132f1136b19a8aa92d17833cacdd6ebe0e0609b2e1927142d76f073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-011-9524-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-011-9524-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Baile</creatorcontrib><creatorcontrib>Jiang, W. Y.</creatorcontrib><creatorcontrib>Holmes, A. L.</creatorcontrib><title>Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this paper, the transition wavelength and wave function overlap of type-II In x Ga 1-x As/GaAs 1-y Sb y quantum wells are numerically calculated using a 4-band k · p Hamiltonian model. The simulation results indicate that absorption wavelength from 2 to 4  μ m can be achieved with a strain compensated quantum well structure. The transition wavelength and wave function overlap can be optimized by properly selecting the thicknesses and composition of the quantum well layers.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Indium gallium arsenides</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photodiodes</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum electronics</subject><subject>Quantum wells</subject><subject>Strain</subject><subject>Wave functions</subject><subject>Wavelengths</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8spj67HyOVYESqRIDILFZju2UVI2d2olQ_z2Owszy3vI-p7sHoXugj0BpvgoAtGCEApAyZQmBC7SANGekgPzrEi0opxkpSiiv0U0IB0pplqR0gfZPJrR7i12Dw-Bla7FyXW9skIPRuLJbuQ6rKd5rPJx7Q6oKn0Zph7HDP-Z4nKhRDaM3ATfO467VpLWNlz7i_bcbnG6dNuEWXTXyGMzd31yiz5fnj80r2b1tq816RxRnMJC8USqpMygBOGtiZDWUspCyZBrygnMlldaZqQ01NKNlzQyULIeE6TxraM6X6GHe23t3Gk0YRNcGFQ-V1rgxiMkSY5xDGqswV5V3IXjTiN63nfTnWBKTVDFLFVGqmKQKiAybmRC7dm-8OLjR2_jRP9AvnZJ6dQ</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Chen, Baile</creator><creator>Jiang, W. Y.</creator><creator>Holmes, A. L.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120601</creationdate><title>Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes</title><author>Chen, Baile ; Jiang, W. Y. ; Holmes, A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-7fcc4b6191132f1136b19a8aa92d17833cacdd6ebe0e0609b2e1927142d76f073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Indium gallium arsenides</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photodiodes</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum electronics</topic><topic>Quantum wells</topic><topic>Strain</topic><topic>Wave functions</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Baile</creatorcontrib><creatorcontrib>Jiang, W. Y.</creatorcontrib><creatorcontrib>Holmes, A. L.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Baile</au><au>Jiang, W. Y.</au><au>Holmes, A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>44</volume><issue>3-5</issue><spage>103</spage><epage>109</epage><pages>103-109</pages><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this paper, the transition wavelength and wave function overlap of type-II In x Ga 1-x As/GaAs 1-y Sb y quantum wells are numerically calculated using a 4-band k · p Hamiltonian model. The simulation results indicate that absorption wavelength from 2 to 4  μ m can be achieved with a strain compensated quantum well structure. The transition wavelength and wave function overlap can be optimized by properly selecting the thicknesses and composition of the quantum well layers.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11082-011-9524-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2012-06, Vol.44 (3-5), p.103-109
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_miscellaneous_1082223315
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Computer Communication Networks
Electrical Engineering
Indium gallium arsenides
Lasers
Mathematical models
Optical Devices
Optics
Photodiodes
Photonics
Physics
Physics and Astronomy
Quantum electronics
Quantum wells
Strain
Wave functions
Wavelengths
title Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20strain%20compensated%20InGaAs/GaAsSb%20type-II%20quantum%20well%20structures%20for%20mid-infrared%20photodiodes&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Chen,%20Baile&rft.date=2012-06-01&rft.volume=44&rft.issue=3-5&rft.spage=103&rft.epage=109&rft.pages=103-109&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-011-9524-1&rft_dat=%3Cproquest_cross%3E1082223315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082223315&rft_id=info:pmid/&rfr_iscdi=true