Cyclic loading of fractured cadaveric femurs after elastomer femoroplasty: an in vitro biomechanical study
Elastomer femoroplasty is a novel and experimental approach in the prevention of hip fracture surgery. Previously, we published the results of an in vitro cadaveric experiment in which we showed a significant reduction of fracture displacement in treated femurs. The aim of the present study was to e...
Gespeichert in:
Veröffentlicht in: | Clinical biomechanics (Bristol) 2012-10, Vol.27 (8), p.819-823 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Elastomer femoroplasty is a novel and experimental approach in the prevention of hip fracture surgery. Previously, we published the results of an in vitro cadaveric experiment in which we showed a significant reduction of fracture displacement in treated femurs. The aim of the present study was to establish the failure loads and inter-fragmentary movement of fractured, elastomer femoroplasty treated femurs during cyclic loading.
16 cadaveric femurs were treated with elastomer femoroplasty and fractured in a simulated fall configuration. Each specimen underwent 10 cycles with a preload of 50 N, starting with a peak load of 250 N followed by 10 cycles of 500 N and continued with 500 N increments. The crosshead speed was 2 mm/s. The failure load, the number of completed cycles, and crosshead extensions were recorded.
The mean failure load was 2709 N (SD 1094). The number of completed cycles until failure was 60 (SD 22). The mean translation during maximum loading was 5.25 mm (SD 0.9). At 1500 N (two times the bodyweight of a 75 kg individual) the extension was 3.16 mm.
Preventive elastomer femoroplasty leads to the stabilization of the proximal femur after fracture. In a single leg stance configuration, cyclic loading with mean failure loads that well exceed the peak loads during normal gait is feasible. |
---|---|
ISSN: | 0268-0033 1879-1271 |
DOI: | 10.1016/j.clinbiomech.2012.05.007 |