Cyclic loading of fractured cadaveric femurs after elastomer femoroplasty: an in vitro biomechanical study

Elastomer femoroplasty is a novel and experimental approach in the prevention of hip fracture surgery. Previously, we published the results of an in vitro cadaveric experiment in which we showed a significant reduction of fracture displacement in treated femurs. The aim of the present study was to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical biomechanics (Bristol) 2012-10, Vol.27 (8), p.819-823
Hauptverfasser: van der Steenhoven, T J, Schaasberg, W, de Vries, A C, Valstar, E R, Nelissen, R G H H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elastomer femoroplasty is a novel and experimental approach in the prevention of hip fracture surgery. Previously, we published the results of an in vitro cadaveric experiment in which we showed a significant reduction of fracture displacement in treated femurs. The aim of the present study was to establish the failure loads and inter-fragmentary movement of fractured, elastomer femoroplasty treated femurs during cyclic loading. 16 cadaveric femurs were treated with elastomer femoroplasty and fractured in a simulated fall configuration. Each specimen underwent 10 cycles with a preload of 50 N, starting with a peak load of 250 N followed by 10 cycles of 500 N and continued with 500 N increments. The crosshead speed was 2 mm/s. The failure load, the number of completed cycles, and crosshead extensions were recorded. The mean failure load was 2709 N (SD 1094). The number of completed cycles until failure was 60 (SD 22). The mean translation during maximum loading was 5.25 mm (SD 0.9). At 1500 N (two times the bodyweight of a 75 kg individual) the extension was 3.16 mm. Preventive elastomer femoroplasty leads to the stabilization of the proximal femur after fracture. In a single leg stance configuration, cyclic loading with mean failure loads that well exceed the peak loads during normal gait is feasible.
ISSN:0268-0033
1879-1271
DOI:10.1016/j.clinbiomech.2012.05.007