Fire retardancy of sol–gel derived titania wood-inorganic composites

Sol–gel technology was applied in tailoring novel wood-made-inorganic composites with improved thermal and fire properties. In practice, composites materials were prepared by impregnating pine sapwood wood with nano-scaled precursor solutions derived from titanium(IV) isopropoxide followed by a ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2012-10, Vol.47 (19), p.6849-6861
Hauptverfasser: Shabir Mahr, Muhammad, Hübert, Thomas, Sabel, Martin, Schartel, Bernhard, Bahr, Horst, Militz, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sol–gel technology was applied in tailoring novel wood-made-inorganic composites with improved thermal and fire properties. In practice, composites materials were prepared by impregnating pine sapwood wood with nano-scaled precursor solutions derived from titanium(IV) isopropoxide followed by a thermal curing process. Thermal and fire properties were evaluated by thermal analysis and cone calorimetry, whereas flammability was specified by oxygen index (LOI) and UL 94 test. Peak heat release rates were moderately reduced indicating fire retardance potential in terms of flame spread attributed to the appropriate protection layer action of the titania-based depositions. LOI (oxygen index) values of these composites were increased up to 38 vol.% in comparison to 23 vol.% for untreated wood. The flame retardancy performance depends on the fire scenario and is strongly influenced by wood loading and crack-free deposition of the titania layers inside the composite.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-012-6628-3