Guaranteed and robust error bounds for nonconforming approximations of elliptic problems

We present guaranteed, robust and computable a posteriori error estimates for nonconforming approximations of elliptic problems. Our analysis is based on a Helmholtz-type decomposition of the error expressed in terms of fluxes. Such a decomposition results in a gradient term and a divergence-free te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2011-04, Vol.31 (2), p.597-615
Hauptverfasser: Repin, S. I., Tomar, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present guaranteed, robust and computable a posteriori error estimates for nonconforming approximations of elliptic problems. Our analysis is based on a Helmholtz-type decomposition of the error expressed in terms of fluxes. Such a decomposition results in a gradient term and a divergence-free term, that are the exact solutions of two auxiliary problems. We suggest a new approach to deriving computable two-sided bounds of the norms of these solutions. The a posteriori estimates obtained in this paper differ from those that are based on projections of nonconforming approximations to a conforming space. Numerical experiments confirm that these new estimates provide very accurate error bounds, and can be efficiently exploited in practical computations.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drp037