Onset of Marangoni convection for evaporating sessile droplets
[Display omitted] ► We determine the onset of Marangoni convection in evaporating sessile droplets. ► The stability parameters contain no fitting coefficients. ► Stability of sessile droplets differs from conical funnels for insulating boundaries. We have generated stability parameters using a linea...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2012-10, Vol.383 (1), p.198-207 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
► We determine the onset of Marangoni convection in evaporating sessile droplets. ► The stability parameters contain no fitting coefficients. ► Stability of sessile droplets differs from conical funnels for insulating boundaries.
We have generated stability parameters using a linear stability analysis to predict the onset criteria for Marangoni convection in evaporating sessile droplets for two types of substrates, insulating and conducting. The stability problem was formulated with boundary conditions that allow for a temperature discontinuity at the liquid–vapour interface and the inclusion of an expression for the evaporation flux that considers this temperature discontinuity. We introduce no fitting coefficients; therefore, the stability parameters we generate contain only physical variables. The results indicate that spherical sessile droplets evaporating on insulating substrates are predicted to have a similar onset criteria with sessile droplets evaporating on conducting substrates. The onset prediction for sessile droplets evaporating on insulating substrates is found to be considerably different than the case of liquids evaporating from conical funnels constructed of insulating materials owing to the modification of the boundary condition from the geometrical shift and the corresponding retention of modes in the solution. A parametric analysis demonstrates how the input variables impact the stability of evaporating sessile droplets. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2012.06.046 |