Support vector machines and neural networks used to evaluate paper manufactured using Eucalyptus globulus
Using advanced machine learning techniques as an alternative to conventional double-entry volume equations, a regression model of the inside-bark volume (dependent variable) for standing Eucalyptus globulus trunks (or main stems) has been built as a function of the following three independent variab...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2012-12, Vol.36 (12), p.6137-6145 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using advanced machine learning techniques as an alternative to conventional double-entry volume equations, a regression model of the inside-bark volume (dependent variable) for standing Eucalyptus globulus trunks (or main stems) has been built as a function of the following three independent variables: age, height and outside-bark diameter at breast height (DBH). The experimental observed data (age, height, outside-bark DBH and inside-bark volume) for 142 trees (E. globulus) were measured and a nonlinear model was built using a data-mining methodology based on support vector machines (SVM) and multilayer perceptron networks (MLP) for regression problems. Coefficients of determination and Furnival’s indices indicate the superiority of the SVM with a radial kernel over the allometric regression models and the MLP. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2012.02.016 |