Tensile properties of high strength polyacrylonitrile (PAN)-based and high modulus pitch-based hybrid carbon fibers-reinforced epoxy matrix composite
The tensile properties of high strength polyacrylonitrile-based (IM600) and high modulus pitch-based (K13D) hybrid carbon fibers-reinforced epoxy matrix composite (CFRP) were investigated. Fiber orientation of the hybrid CFRP specimen was set to [0 (IM600) /0 (K13D) ] 2S . The fiber volume fraction...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2012-03, Vol.47 (6), p.2743-2751 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tensile properties of high strength polyacrylonitrile-based (IM600) and high modulus pitch-based (K13D) hybrid carbon fibers-reinforced epoxy matrix composite (CFRP) were investigated. Fiber orientation of the hybrid CFRP specimen was set to [0
(IM600)
/0
(K13D)
]
2S
. The fiber volume fraction of the hybrid CFRP specimen was 55.7 vol% (IM600: 29.3 vol%, K13D: 26.4 vol%). The tensile stress–strain curve of the hybrid CFRP specimen shows a complicated shape (jagged trace). By the high modulus K13D CFRP layers, the hybrid CFRP specimen shows the intermediate modulus in the initial stage of loading. Subsequently, when the K13D CFRP layers begin to fail, the high strength IM600 CFRP layers would hold the load (strength) and the material continues to endure high load without instantaneous failure. Because higher strength fiber can help the load for a certain time after failure occur, the hybrid composite could be considered one example of a material possessing preventing instantaneous failure. The Weibull statistical distributions of the mono (IM600 and K13D) and the hybrid CFRP specimens were also examined. The Weibull modulus for the mono CFRP specimens was calculated to be 22.9 for the IM600 CFRP specimen and 14.4 for the K13D CFRP specimen, respectively. The Weibull modulus for the hybrid CFRP specimen was calculated to be 39.6 for the initial fracture strength and 20.6 for the tensile fracture strength, respectively. The Weibull modulus for the initial fracture strength is higher than that for the K13D CFRP specimen and the Weibull modulus for the tensile fracture strength is almost similar to that for the IM600 CFRP specimen. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-011-6101-8 |