Jump robust daily covariance estimation by disentangling variance and correlation components
A jump robust positive semidefinite rank-based estimator for the daily covariance matrix based on high-frequency intraday returns is proposed. It disentangles covariance estimation into variance and correlation components. This allows us to account for non-synchronous trading by estimating correlati...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2012-11, Vol.56 (11), p.2993-3005 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A jump robust positive semidefinite rank-based estimator for the daily covariance matrix based on high-frequency intraday returns is proposed. It disentangles covariance estimation into variance and correlation components. This allows us to account for non-synchronous trading by estimating correlations over lower sampling frequencies. The efficiency gain of disentangling covariance estimation and the jump robustness of the estimator are illustrated in a simulation study. In an application to the Dow Jones Industrial Average constituents, it is shown that the proposed estimator leads to more stable portfolios. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2011.05.003 |