Jump robust daily covariance estimation by disentangling variance and correlation components

A jump robust positive semidefinite rank-based estimator for the daily covariance matrix based on high-frequency intraday returns is proposed. It disentangles covariance estimation into variance and correlation components. This allows us to account for non-synchronous trading by estimating correlati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2012-11, Vol.56 (11), p.2993-3005
Hauptverfasser: Boudt, Kris, Cornelissen, Jonathan, Croux, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A jump robust positive semidefinite rank-based estimator for the daily covariance matrix based on high-frequency intraday returns is proposed. It disentangles covariance estimation into variance and correlation components. This allows us to account for non-synchronous trading by estimating correlations over lower sampling frequencies. The efficiency gain of disentangling covariance estimation and the jump robustness of the estimator are illustrated in a simulation study. In an application to the Dow Jones Industrial Average constituents, it is shown that the proposed estimator leads to more stable portfolios.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2011.05.003