Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation
We consider a piecewise linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range -1 < alpha < 0. Our analysis shows that, for a time interval (0, T) and a spatial domain Omega , the uniform error in L sub( infinity...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2012-07, Vol.32 (3), p.906-925 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a piecewise linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range -1 < alpha < 0. Our analysis shows that, for a time interval (0, T) and a spatial domain Omega , the uniform error in L sub( infinity )((0, T); L sub(2)( Omega )) is of order k super( rho ), where rho = ming(2, + alpha ) and k denotes the maximum time step. Thus, if -1/2 less than or equal to alpha < 0, then we have optimal O(k super(2)) convergence, just as for the classical diffusion (heat) equation. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/drr027 |