Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation

We consider a piecewise linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range -1 < alpha < 0. Our analysis shows that, for a time interval (0, T) and a spatial domain Omega , the uniform error in L sub( infinity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2012-07, Vol.32 (3), p.906-925
Hauptverfasser: Mustapha, K., McLean, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a piecewise linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range -1 < alpha < 0. Our analysis shows that, for a time interval (0, T) and a spatial domain Omega , the uniform error in L sub( infinity )((0, T); L sub(2)( Omega )) is of order k super( rho ), where rho = ming(2, + alpha ) and k denotes the maximum time step. Thus, if -1/2 less than or equal to alpha < 0, then we have optimal O(k super(2)) convergence, just as for the classical diffusion (heat) equation.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drr027