A self-stabilizing algorithm for optimally efficient sets in graphs
The efficiency of a set S⊆V in a graph G=(V,E), is defined as ε(S)=|{v∈V−S:|N(v)∩S|=1}|; in other words, the efficiency of a set S equals the number of vertices in V−S that are adjacent to exactly one vertex in S. A set S is called optimally efficient if for every vertex v∈V−S, ε(S∪{v})⩽ε(S), and fo...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2012-08, Vol.112 (16), p.621-623 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The efficiency of a set S⊆V in a graph G=(V,E), is defined as ε(S)=|{v∈V−S:|N(v)∩S|=1}|; in other words, the efficiency of a set S equals the number of vertices in V−S that are adjacent to exactly one vertex in S. A set S is called optimally efficient if for every vertex v∈V−S, ε(S∪{v})⩽ε(S), and for every vertex u∈S, ε(S−{u}) |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/j.ipl.2012.02.014 |