Verification of JUPITER Standard Analysis Method for Upgrading Joyo MK-III Core Design and Management

In the experimental fast reactor Joyo, loading of irradiation test rigs causes a decrease in excess reactivity because the rigs contain less fissile materials than the driver fuel. In order to carry out duty operation cycles using as many irradiation rigs as possible, it is necessary to upgrade the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Power and Energy Systems 2012, Vol.6(2), pp.184-196
Hauptverfasser: MAEDA, Shigetaka, ITO, Chikara, SEKINE, Takashi, AOYAMA, Takafumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the experimental fast reactor Joyo, loading of irradiation test rigs causes a decrease in excess reactivity because the rigs contain less fissile materials than the driver fuel. In order to carry out duty operation cycles using as many irradiation rigs as possible, it is necessary to upgrade the core performance to increase its excess reactivity and irradiation capacity. Core modification plans have been considered, such as the installation of advanced radial reflectors and reduction of the number of control rods. To implement such core modifications, it is first necessary to improve the prediction accuracy in core design and to optimize safety margins. In the present study, verification of the JUPITER fast reactor standard analysis method was conducted through a comparison between the calculated and the measured Joyo MK-III core characteristics, and it was concluded that the accuracy for a small sodium-cooled fast reactor with a hard neutron spectrum was within 5 % of unity. It was shown that, the performance of the irradiation bed core could be upgraded by the improvement of the prediction accuracy of the core characteristics and optimization of safety margins.
ISSN:1881-3062
1881-3062
DOI:10.1299/jpes.6.184