Microgravity opposed-flow flame spread in polyvinyl chloride tubes

The effects of gravity on opposed-flow flame spread in a confined geometry were investigated experimentally in the 2.2-s drop tower at the NASA Glenn Research Center. Pure oxygen flowed through samples of 0.64-cm-inner-diameter polyvinyl chloride (PVC) tubing held either horizontally or vertically i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2008-09, Vol.154 (4), p.789-801
Hauptverfasser: Sidebotham, George W., Olson, Sandra L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of gravity on opposed-flow flame spread in a confined geometry were investigated experimentally in the 2.2-s drop tower at the NASA Glenn Research Center. Pure oxygen flowed through samples of 0.64-cm-inner-diameter polyvinyl chloride (PVC) tubing held either horizontally or vertically in a combustion chamber filled with nitrogen. The sample was ignited in normal gravity with a hot wire, and once a flame was established, the apparatus was dropped to observe microgravity effects. Flame spread rate was measured in normal and microgravity at pressures of 1.0 and 0.5 atm. A low-flow ignition limit was observed at an opposed-flow velocity of 1.36 cm/s, at which point the horizontal, vertical, and microgravity flame spread rates were 0.40, 0.30, and 0.16 cm/s, respectively. For flow velocities above approximately 5.2 cm/s, there was no difference in the flame spread rates for normal and microgravity and the flame spread rate increased with a nearly square root dependence with respect to opposed-flow velocity. Buoyant flow velocities of 2.5 and 1.5 cm/s were estimated for horizontal and vertical flames, respectively. Vertical tests conducted at 0.5 atm pressure demonstrated no difference in flame spread rate between normal and microgravity. These results suggest that the fire risk associated with the use of PVC tubes during general anesthesia in either space or ground applications may be reduced if the application of a high-energy surgical tool is prevented during an active phase of the breathing cycle (inhale or exhale).
ISSN:0010-2180
1556-2921
DOI:10.1016/j.combustflame.2008.05.014